NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(20 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Also recall that $\sin 2y = 2 \sin y \cos y$ for any real number y.

Suppose that x is a real number such that $\sin x$ is non-zero. Use (strong) induction to prove that $\prod_{n=0}^{n-1} \cos(2^p x) = \frac{\sin(2^n x)}{2^n \sin x}$, for any positive integer n.

Solution: Proof by induction on n.

Base case(s): At n = 1, $\prod_{p=0}^{n-1} \cos(2^p x) = \cos x$ and $\frac{\sin(2^n x)}{2^n \sin x} = \frac{\sin 2x}{2 \sin x} = \frac{2 \sin x \cos x}{2 \sin x} = \cos x$. So the claim is true.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that

$$\prod_{n=0}^{n-1} \cos(2^p x) = \frac{\sin(2^n x)}{2^n \sin x}, \text{ for } n = 1, \dots, k.$$

Rest of the inductive step: In particular, by the inductive hypothesis, $\prod_{p=0}^{k-1} \cos(2^p x) = \frac{\sin(2^k x)}{2^k \sin x}$. Using this, we can compute:

$$\begin{split} \prod_{p=0}^k \cos(2^p x) &= (\cos(2^k x)) \prod_{p=0}^{k-1} \cos(2^p x) = (\cos(2^k x)) \frac{\sin(2^k x)}{2^k \sin x} \\ &= \frac{\cos(2^k x) \sin(2^k x)}{2^k \sin x} = \frac{2 \cos(2^k x) \sin(2^k x)}{2^{k+1} \sin x} \quad \text{(since } \sin 2y = 2 \sin y \cos y) \\ &= \frac{\sin(2 \cdot 2^k x)}{2^{k+1} \sin x} = \frac{\sin(2^{k+1} x)}{2^{k+1} \sin x} \end{split}$$

So $\prod_{n=0}^{k} \cos(2^{p}x) = \frac{\sin(2^{k+1}x)}{2^{k+1}\sin x}$. This is what we needed show, since it is the claim at n = k+1.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(20 points) Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by is defined by

$$f(1) = 5$$
 $f(2) = -5$

$$f(n) = 4f(n-2) - 3f(n-1)$$
, for all $n \ge 3$

Use (strong) induction to prove that $f(n) = 2 \cdot (-4)^{n-1} + 3$

Solution: Proof by induction on n.

Base case(s): For n = 1, $2 \cdot (-4)^{n-1} + 3 = 2 \cdot (-4)^0 + 3 = 2 \cdot 1 + 3 = 5$, which is equal to f(1).

For
$$n = 2$$
, $2 \cdot (-4)^{n-1} + 3 = 2 \cdot (-4)^1 + 3 = 2 \cdot (-4) + 3 = -5$, which is equal to $f(2)$.

So the claim holds.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $f(n) = 2 \cdot (-4)^{n-1} + 3$, for n = 1, 2, ..., k - 1, for some integer $k \ge 3$

Rest of the inductive step:

Using the definition of f and the inductive hypothesis, we get

$$f(k) = 4f(k-2) - 3f(k-1) = 4(2 \cdot (-4)^{k-3} + 3) - 3(2 \cdot (-4)^{k-2} + 3)$$

Simplifying the algebra,

$$4(2 \cdot (-4)^{k-3} + 3) - 3(2 \cdot (-4)^{k-2} + 3) = 8 \cdot (-4)^{k-3} + 12 - 6 \cdot (-4)^{k-2} - 9$$

$$= -2 \cdot (-4)^{k-2} - 6 \cdot (-4)^{k-2} + 3$$

$$= -8 \cdot (-4)^{k-2} + 3 = 2 \cdot (-4)^{k-1} + 3$$

So $f(k) = 2 \cdot (-4)^{k-1} + 3$, which is what we needed to prove.

Name:											
NetID:				Lecture:			\mathbf{A}	\mathbf{B}			
Discussion:	Thursday	Friday	10	11	19	1	2	3	1	5	6

(20 points) A "triangle-free" graph is a graph that doesn't contain any 3-cycles. Use (strong) induction to prove that a triangle-free graph with 2n nodes has $\leq n^2$ edges, for any positive integer n. Hint: in the inductive step, remove a pair of nodes joined by an edge. How many edges from those nodes to the rest of the graph?

Solution: Proof by induction on n.

Base case(s): At n=1. The graph has only two nodes, so it cannot have more than one edge. Since $n^2 = 1$, this means the claim is true.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that any triangle-free graph with 2n nodes has $\leq n^2$ edges, for n = 1, ..., k.

Rest of the inductive step: Let G be a triangle-free graph with 2(k+1) nodes $(k \ge 1)$. There are two cases:

Case 1: G has no edges. Since $(k \ge 1)$, this means that G has $\le (k+1)^2$ edges, which is what we needed to prove.

Case 2: G has at least one edge. Let's pick two nodes a and b that are joined by an edge. Let H be the graph we get by removing a, b, and all their edges from G. By the inductive hypothesis, H has $\leq k^2$ edges.

Consider a node v in H (i.e. a node that's not a or b). Because G is triangle-free, v cannot be joined to both of a and b. So v has either one edge to a or b, or no edges. Therefore, since H has 2k nodes, there can be no more than 2k edges from a/b to the nodes in H. We also have one extra edge: the edge joining a to b.

The total number of edges in G is the number in H, plus the nodes from a/b to a node in H, plus the edge joining a to b. That total is $\leq k^2 + 2k + 1 = (k+1)^2$. This is what we needed to prove.

Name:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(20 points) Suppose that $f: \mathbb{N} \to \mathbb{Z}$ is defined by

$$f(0) = 1$$
 $f(1) = -5$

$$f(n) = -7f(n-1) - 10f(n-2)$$
, for $n \ge 2$

Use (strong) induction to prove that $f(n) = (-1)^n \cdot 5^n$

Solution: Proof by induction on n.

Base case(s): $f(0) = 1 = (-1)^0 \cdot 5^0$ and $f(1) = -5 = (-1)^1 \cdot 5^1$. So the claim holds.

Inductive hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $f(n) = (-1)^n * 5^n$ for n = 0, 1, ..., k - 1, for some integer $k \ge 2$.

Rest of the inductive step:

From the inductive hypothesis, we know that $f(k-1) = (-1)^{k-1} * 5^{k-1}$ and $f(k-2) = (-1)^{k-2} * 5^{k-2}$ So then we have

$$f(k) = -7 \cdot f(k-1) - 10 \cdot f(k-2)$$

$$= -7 \cdot (-1)^{k-1} * 5^{k-1} + -10 \cdot (-1)^{k-2} * 5^{k-2}$$

$$= 7 \cdot (-1)^k * 5^{k-1} - 10 \cdot (-1)^k * 5^{k-2}$$

$$= 7 \cdot (-1)^k * 5^{k-1} - 2 \cdot (-1)^k * 5^{k-1}$$

$$= 5 \cdot (-1)^k * 5^{k-1} = 5 \cdot (-1)^k * 5^k$$

So $f(k) = 5 \cdot (-1)^k * 5^{k-1} = (-1)^k * 5^k$ which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(20 points) Use (strong) induction to prove that, for all positive integers n, $x^2 + y^2 = z^n$ has a positive integer solution. (That is, a solution in which x, y, and z are all positive integers.) Hints: (1) notice that $3^2 + 4^2 = 5^2$ and (2) use the solution for n = k - 2 (not n = k - 1) to build a solution for n = k.

Solution: Proof by induction on n.

Base case(s): At n=1, one solution to $x^2+y^2=z$ is x=1, y=2, and z=5.

At n=2, one solution to $x^2+y^2=z^2$ is x=3, y=4, and z=5.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Suppose that there is a positive integer solution to $x^2 + y^2 = z^n$ for n = 1, 2, ..., k - 1.

Rest of the inductive step: From the inductive hypothesis, we know that there is a positive integer solution to $x^2 + y^2 = z^{k-2}$. That is, we have positive integers a, b, and c, such that $a^2 + b^2 = c^{k-2}$.

Consider x = ac, y = bc and z = c. ac and bc are positive integers because a, b, and c are positive integers. Then

$$x^{2} + y^{2} = (ac)^{2} + (bc)^{2} = c^{2}(a^{2} + b^{2}) = c^{2}(c^{k-2}) = c^{k}$$

So x = ac, y = bc and z = c is a positive integer solution to $x^2 + y^2 = z^k$, which is what we needed to show.

NetID:______ Lecture:

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

 \mathbf{A}

В

(20 points) Suppose that $g: \mathbb{N} \to \mathbb{R}$ is defined by

$$g(0) = 0$$
 $g(1) = \frac{4}{3}$ $g(n) = \frac{4}{3}g(n-1) - \frac{1}{3}g(n-2)$, for $n \ge 2$

Use (strong) induction to prove that $g(n) = 2 - \frac{2}{3^n}$

Solution: Proof by induction on n.

Base case(s): n = 0: $2 - \frac{2}{3^n} = 2 - \frac{2}{1} = 0 = g(0)$ So the claim holds. n = 1: $2 - \frac{2}{3^n} = 2 - \frac{2}{3} = \frac{4}{3} = g(1)$ So the claim holds.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $g(n) = 2 - \frac{2}{3^n}$, for $n = 0, 1, \dots, k - 1$ for some integer $k \ge 2$.

Inductive Step:

We need to show that $g(k) = 2 - \frac{2}{3^k}$

$$\begin{split} g(k) &= \frac{4}{3}g(k-1) - \frac{1}{3}g(k-2) & \text{[by the def, } k \geq 2] \\ &= \frac{4}{3}\left(2 - \frac{2}{3^{k-1}}\right) - \frac{1}{3}\left(2 - \frac{2}{3^{k-2}}\right) & \text{[Inductive Hypothesis]} \\ &= \frac{8}{3} - \frac{8}{3^k} - \frac{2}{3} + \frac{2}{3^{k-1}} \\ &= \frac{6}{3} - \frac{8}{3^k} + \frac{6}{3^k} \\ &= 2 - \frac{2}{3^k}. \end{split}$$