Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(20 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^5 (p+1) = 4 \cdot 5 \cdot 6$. Also recall that $\sin 2y = 2 \sin y \cos y$ for any real number y.

Suppose that x is a real number such that $\sin x$ is non-zero. Use (strong) induction to prove that $\prod_{p=0}^{n-1} \cos(2^p x) = \frac{\sin(2^n x)}{2^n \sin x}$, for any positive integer n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

 \mathbf{B}

Name:_____

NetID:_____ Lecture: A

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(20 points) Suppose that $f: \mathbb{Z}^+ \to \mathbb{Z}$ is defined by is defined by

$$f(1) = 5$$
 $f(2) = -5$

$$f(n) = 4f(n-2) - 3f(n-1)$$
, for all $n \ge 3$

Use (strong) induction to prove that $f(n) = 2 \cdot (-4)^{n-1} + 3$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:											
NetID:				Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

(20 points) A "triangle-free" graph is a graph that doesn't contain any 3-cycles. Use (strong) induction to prove that a triangle-free graph with 2n nodes has $\leq n^2$ edges, for any positive integer n. Hint: in the inductive step, remove a pair of nodes joined by an edge. How many edges from those nodes to the rest of the graph?

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(20 points) Suppose that $f: \mathbb{N} \to \mathbb{Z}$ is defined by

$$f(0) = 1$$
 $f(1) = -5$

$$f(n) = -7f(n-1) - 10f(n-2)$$
, for $n \ge 2$

Use (strong) induction to prove that $f(n) = (-1)^n \cdot 5^n$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:											
NetID:				Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

(20 points) Use (strong) induction to prove that, for all positive integers n, $x^2 + y^2 = z^n$ has a positive integer solution. (That is, a solution in which x, y, and z are all positive integers.) Hints: (1) notice that $3^2 + 4^2 = 5^2$ and (2) use the solution for n = k - 2 (not n = k - 1) to build a solution for n = k.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

 \mathbf{B}

Name:_____

NetID:_____ Lecture: A

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(20 points) Suppose that $g: \mathbb{N} \to \mathbb{R}$ is defined by

$$g(0) = 0$$
 $g(1) = \frac{4}{3}$
 $g(n) = \frac{4}{3}g(n-1) - \frac{1}{3}g(n-2)$, for $n \ge 2$

Use (strong) induction to prove that $g(n) = 2 - \frac{2}{3^n}$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: