Lecture: \mathbf{B}

Discussion: Thursday Friday **10 12** 1 $\mathbf{2}$ 3 11 4 6 5

1. (8 points) Here is a grammar with start symbol S and terminal symbol a. Draw three parse trees for the string a a a a a a a that match this grammar.

$$S \rightarrow SS \mid aSa \mid aa$$

Solution:

2. (4 points) Check the (single) box that best characterizes each item.

A binary tree of height h has at false most $2^{h+1} - 1$ nodes.

The root node of a tree is a sometimes leaf. always never

Lecture: \mathbf{B}

Friday **10** 1 Discussion: Thursday 3 11 **12** 4 5 6

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

2. (4 points) Check the (single) box that best characterizes each item.

$$\sum_{k=1}^{n} 2^k$$

$$2^{n+1}-1$$

$$2^{n+1}-2 \qquad \boxed{ }$$

$$2^{\eta}$$

	ľ
	ı
	ı
	ı

$$2^n - 1$$

 2^h is _____ the number of leaves in a binary tree of height h.

an upper bound on a lower bound on

exactly not a bound on

Lecture: \mathbf{B}

Discussion: Thursday Friday 1 3 2 **10** 11 **12** 4 6 5

1. (8 points) Here is a grammar with start symbol S and terminal symbols a and b. Draw three parse trees for the string a b a b a b a b a that match this grammar.

$$S \rightarrow S b S \mid a$$

2. (4 points) Check the (single) box that best characterizes each item.

An m-ary tree with i internal nodes has mi + 1 nodes total.

sometimes

Total number of leaves in a 3-ary tree of height h

$$3^h$$

$$\leq 3^h$$

$$\frac{1}{2}(3^{h+1}-1)$$

$$3^{h+1} - 1$$

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, and c. Circle the trees that match the grammar.

$$S \rightarrow a N a \mid b N b \mid a \mid b$$

$$N \rightarrow S S \mid c$$

2. (4 points) Check the (single) box that best characterizes each item.

The number of paths between two distinct nodes in an n-node tree. Paths in opposite directions count as the same.

$$\frac{n(n-1)}{2}$$
 \bigvee

$$n(n-1)$$

$$n^2$$

$$\frac{n(n+1)}{2}$$

$$\sum_{k=0}^{n} 2^k$$

$$2^n - 2$$

$$2^n - 1$$

$$2^{n-1}-1$$

$$2^{n+1} - 1$$

Name:											
NetID:			_	Lec	cture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
$S \rightarrow$	Consider the foll $S b S \mid a \mid c a$ y start symbol.	ļ,		ole aro	a h c	and	d				
Here are two	o sequences of lea this sequence of	f labels. For	r each s	sequenc	ce, eithe	er dra	aw a 1		_	•	
	Impossible. In the lways be followed by an a.	0	,	s n c w	ninal in ould be ve use th	the usin is ru lren	string is Sale, the incre	g is b $S \to S$ he couplesses b	o, the $S^{\prime}bS$. Int of $S^{\prime}bS$ or	e only But e S no-	only tervale we each time des withfine is a eaves.
2. (4 points) (Check the (single)	box that be	est cha	racteri	zes each	iter	n.				
The level of in a full and binary tree	-	0	1		h-1			<	h [h $\sqrt{}$
Height of tree with 2^n	· < Y	n-1	<u> </u>	n		≤ 2	n		<u> </u>	2^n –	1 🗸

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (8 points) Here is a grammar with start symbol S and terminal symbols a and b. Draw three parse trees for the string a a b that match this grammar.

2. (4 points) Check the (single) box that best characterizes each item.

The number of paths between two nodes in an *n*-node tree. Paths in opposite directions count as different.

2m	
$\Delta T t$	

$$\frac{n(n-1)}{2}$$

$$n(n-1)$$

$$n^2$$

$$\frac{n(n+1)}{2}$$

A tree node is an ancestor of itself.

always

sometimes

never