Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a multiple of 3.

$$T(3) = 7$$
 $T(n) = 2T(n-3) + c$

- (a) The height: $\frac{n}{3} 1$
- (b) The number of leaves (please simplify): $2^{\frac{n}{3}-1}$
- (c) Total work (sum of the nodes) at level k (please simplify): There are 2^k nodes at level k, each containing value c. So the total work is $c2^k$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$3^n$$
 $4^{\log_2 n}$ 2^{3n} $3^{\log_2 4}$ $0.1n$ $(5n)!$ \sqrt{n}

Solution:

$$3^{\log_2 4} \ll \sqrt{n} \ll 0.1n \ll 4^{\log_2 n} \ll 3^n \ll 2^{3n} \ll (5n)!$$

Name:											
NetID:			-	Lec	cture:		\mathbf{A}	В			
Discussion	Thursday	Friday	10	11	12	1	2	3	4	5	6

1. (7 points) Prof. Flitwick claims that for any functions f and g from the reals to the reals whose output values are always > 1, if $f(x) \ll g(x)$ then $\log(f(x)) \ll \log(g(x))$ Is this true? Briefly justify your answer.

Solution: This is not true. Consider f(x) = x and $g(x) = x^2$. Then $\log(g(x)) = 2\log(f(x))$ So it can't be the case that $\log(f(x)) \ll \log(g(x))$.

2. (8 points) Check the (single) box that best characterizes each item.

T(1) = c T(n) = 4T(n/2) + n	$\Theta(\log n)$ $\Theta(n^2)$		$\Theta(\sqrt{n})$ $\Theta(n^3)$		$\Theta(n)$ $\Theta(2^n)$	$\Theta(n \log n)$ $\Theta(3^n)$	
T(1) = d $T(n) = T(n/2) + c$	$\Theta(\log n)$ $\Theta(n^2)$	$\sqrt{}$	$\Theta(\sqrt{n})$ $\Theta(n^3)$		$\Theta(n)$ $\Theta(2^n)$	$\Theta(n \log n)$ $\Theta(3^n)$	
Suppose $f(n) \ll g(n)$. Is $g(n) \ll f(n)$?		no	$\sqrt{}$	per	haps	yes	
Suppose f and g produce positive outputs and $f(n)$. Will $g(n)$ be $O(f(n))$?		no	$\sqrt{}$	per	haps	yes	

Name:											
NetID:			- 10		ture:	1	A	В	4	r	c
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
	Suppose that f , d $g(x)$ is $\Theta(h(x))$					e rea	ls to	the re	eals,	such	that $f(x)$
Solution:	This is false.										
Suppose th	at $g(x) = h(x) =$	x^2 and $f(x)$	$)=x^2-$	+x. T	hen $f(x)$) — (g(x) =	= x, w	vhich	is no	ot $\Theta(x^2)$.
2. (8 points) (Check the (single) box that b	est cha	racteri	zes each	itei	m.				
T(1) = d $T(n) = 3T(1)$		$(\log n)$ (n^2)	$\Theta(\sqrt{9})$ $\Theta(n^3)$		$\Theta(n)$ $\Theta(2)$			$\Theta(n)$ $\Theta(3^{r})$) ,	
T(1) = d $T(n) = 2T(1)$	(/0) +	$(\log n)$ (n^2)	$\Theta(\sqrt{\theta})$ $\Theta(n^3)$,	$\sqrt{}$	$\Theta(n)$	$\log n$	n)	
problems, e	problem of size each of size n/m ing time when		.b- est	c < m $c > m$	$\sqrt{}$		k = r $cm = r$				
n^{log_32} grows	s at	faster t			slov	ver t	than r	n	/		

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 3.

$$T(9) = 7 T(n) = T\left(\frac{n}{3}\right) + n^2$$

- (a) The height: $\log_3 n 3$
- (b) Number of nodes at level k: One. (This tree does not branch.)
- (c) Value in each node at level k: At level k, the problem size is $\frac{n}{3^k}$. So the value in each node is $(\frac{n}{3^k})^2$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$(\sqrt{n})^4$$
 200 log₅ n log(2ⁿ) 2ⁿ + n! 7ⁿ 3⁵⁷ 55n log n

Solution:

$$3^{57} \ll 200 \log_5 n \ll \log(2^n) \ll 55n \log n \ll (\sqrt{n})^4 \ll 7^n \ll 2^n + n!$$

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

$$T(8) = 7 T(n) = 4T\left(\frac{n}{2}\right) + n$$

- (a) The height: $\log_2 n 3$
- (b) Total work (sum of the nodes) at level k (please simplify): There are 4^k nodes at level k. Each one contains the value $\frac{n}{2^k}$. So the total for the level is $2^k n$.
- (c) The number of leaves (please simplify): $4^{\log_2 n 3} = \frac{1}{4^3} 4^{\log_2 n}$ $4^{\log_2 n} = 4^{\log_4 n \log_2 4} = (4^{\log_4 n})^{\log_2 4} == n^{\log_2 4} = n^2$ So the number of leaves is $\frac{1}{4^3} n^2$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

15n! $\log(n^5)$ 127(2ⁿ) $n\log_2 4$ 7ⁿ 47n³ 20n

Solution:

 $\log(n^5) \ll n \log_2 4 \ll 20n \ll 47n^3 \ll 127(2^n) \ll 7^n \ll 15n!$

Name:											
NetID:			-	Lec	cture:		\mathbf{A}	В			
Discussion	Thursday	Friday	10	11	12	1	2	3	4	5	6

1. (7 points) Suppose that f and g are functions from the reals to the reals. Define precisely what it means for g to be O(f).

Solution: There are positive reals c and k such that $0 \le g(x) \le cf(x)$ for every $x \ge k$.

2. (8 points) Check the (single) box that best characterizes each item.

T(1) = d $T(n) = T(n-1) + c$	$\Theta(\log n)$ $\Theta(n^2)$		$\Theta(\sqrt{n})$ $\Theta(n^3)$		$\Theta(n)$ $\Theta(2^n)$	$\sqrt{}$	$\Theta(n \log n)$ $\Theta(3^n)$	
T(1) = d $T(n) = T(n/3) + c$	$\Theta(\log n)$ $\Theta(n^2)$	$\sqrt{}$	$\Theta(\sqrt{n})$ $\Theta(n^3)$		$\Theta(n)$ $\Theta(2^n)$		$\Theta(n \log n)$ $\Theta(3^n)$	
Suppose $f(n) \ll g(n)$. Is $g(n) \ll f(n)$?		no	$\sqrt{}$	per	haps		yes	
Suppose $f(n)$ is $\Theta(g(n))$ Will $g(n)$ be $O(f(n))$?		no		per	haps		yes 🗸	