
CS 173, Spring 17 Examlet 11, Part A 1

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

01 Munch(a1, . . . , an: an array of n positive integers)
02 if (n = 1) return a1
03 else if (n = 2) return a1 + a2
04 else if (n = 3) return a1 + a2 + a3
05 else
06 p = ⌊n/3⌋
07 q = ⌊2n/3⌋
08 rv = Munch(a1, . . . , ap) + Munch(aq+1, . . . , an)
09 rv = rv + Munch(ap+1, . . . , aq)
10 return rv

Dividing an array takes constant time.

1. (5 points) Let T (n) be the running time of Munch. Give a recursive definition of T (n).

Solution:

T (1) = a

T (2) = b

T (3) = c

T (n) = 3T (n/3) + d

2. (3 points) What is the height of the recursion tree for T (n), assuming n is a power of 3?

Solution: log3(n)− 1

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: d3k

4. (4 points) What is the big-Theta running time of Munch? Briefly justify your answer.

Solution: The number of leaves is 3log3 n−1 = n
3
, which is Θ(n). The total number of nodes is

proportional to the number of leaves. Since each node contains a constant amount of work, the
running time is proportional to the number of nodes. So the running time is Θ(n).

CS 173, Spring 17 Examlet 11, Part A 2

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

01 Crunch(a0, . . . , an−1)) \\ input is an array of n integers (n ≥ 2)
02 if (n = 2 and a0 > a1)
03 swap(a0, a1) \\ interchange the values at positions 0 and 1 in the array
04 else if (n > 2)
05 p = ⌊n

4
⌋

06 q = ⌊n
2
⌋

07 r = p + q
08 Crunch(a0, . . . , aq) \\ constant time to make smaller array
09 Crunch(aq+1, . . . , an−1) \\ constant time to make smaller array
10 Crunch(ap, . . . , ar) \\ constant time to make smaller array

1. (5 points) Suppose that T (n) is the running time of Crunch on an input array of length n. Give a
recursive definition of T (n).

Solution:

T (1) = c, T (2) = d

T (n) = 3T (n/2) + f

2. (4 points) What is the height of the recursion tree for T (n), assuming n is a power of 2?

Solution: log2 n− 1

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: f · 3k

4. (3 points) How many leaves are in the recursion tree for T (n)? (Simplify your answer.)

Solution: 3log2 n−1 = 1/3(3log2 n) = 1/3(3log3 n log2 3) = 1/3 · nlog2 3

CS 173, Spring 17 Examlet 11, Part A 3

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

01 Crumple(a1, . . . , an: a list of n positive integers)
02 if (n = 1) return a1
03 else if (n = 2) return a1 + a2
04 else if (n = 3) return a1 + a2 + a3
05 else
06 p = ⌊n/3⌋
07 q = ⌊2n/3⌋
08 rv = Crumple(a1, . . . , ap) + Crumple(aq+1, . . . , an)
09 rv = rv + Crumple(ap+1, . . . , aq)
10 return rv

Dividing a list takes O(n) time.

1. (5 points) Let T (n) be the running time of Crumple. Give a recursive definition of T (n).

Solution:

T (2) = c

T (n) = 3T (n/3) + dn+ f

2. (3 points) What is the height of the recursion tree for T (n), assuming n is a power of 3?

Solution: log3(n)− 1

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: There are 3k nodes, each containing dn
3k

+ f . So the total work is dn+ f3k.

4. (4 points) What is the big-Theta running time of Crumple?

Solution: If we look at the dn part of the node contents, there are log3(n)−1 levels, each having n
total work. So Θ(n log n) total work. (The base of the log changes this only by a constant, therefore
does not matter to a big-Theta answer.)

To analyzie the f3k part of the node contents, we need to sum across all the levels. Quick (but ok)
version: This sum is proportional to the number of nodes in the lowest layer, which is f3log3 n−2,
which is proportional to 3log3 n = n which is Θ(n).

Since Θ(n logn) is the faster growing of these two answers, the running time of Crumple is Θ(n log n).

CS 173, Spring 17 Examlet 11, Part A 4

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

01 Slide(a1, . . . , an) \\ input is a linked list of n integers
02 if (n = 1) return a1
03 else
04 m = ⌊n

2
⌋

05 p = Slide(a1, . . . , am) \\ O(n) time to split list
06 q = Slide(am+1, . . . , an) \\ O(n) time to split list
06 return max(p,q)

1. (5 points) Suppose that T (n) is the running time of Slide on an input array of length n and assume
that n is a power of 2. Give a recursive definition of T (n).

Solution:

T (1) = c

T (n) = 2T (n/2) + dn+ f

2. (4 points) What is the height of the recursion tree for T (n)?

Solution: log2 n

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at non-leaf level k of
this tree?

Solution: There are 2k nodes, each containing f + dn/2k. So the total is 2kf + dn

4. (3 points) What is the big-Theta running time of Slide?

Solution: Θ(n log n)

CS 173, Spring 17 Examlet 11, Part A 5

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

01 Swing(a1, . . . , an; b1, . . . , bn) \\ input is 2 arrays of n integers, n is a power of 2
02 if (n = 1)
03 return a1b1
04 else
05 p = n

2

06 rv = Swing(a1, . . . , ap, b1, . . . , bp)
07 rv = rv + Swing(a1, . . . , ap, bp+1, . . . , bn)
08 rv = rv + Swing(ap+1, . . . , an, bp+1, . . . , bn)
09 rv = rv + Swing(ap+1, . . . , an, b1, . . . , bp)
10 return rv

1. (5 points) Suppose that T (n) is the running time of Swing on an input array of length n. Give a
recursive definition of T (n). Assume that dividing an array in half takes constant time.

Solution:

T (1) = c

T (n) = 4T (n/2) + d

2. (3 points) What is the height of the recursion tree for T (n), assuming n is a power of 2?

Solution: log2 n

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: There are 4k nodes, each containing n. So the total work is 4kd

4. (4 points) What is the big-Theta running time of Swing. Briefly justify your answer. Recall that∑n

k=0
ak = an+1

−1

a−1
.

Solution: The number of leaves is 4log2 n = 4log4 n log2 4 = nlog2 4 = n2 which is Θ(n2). The total
number of nodes is proportional to the number of leaves (because

∑n

k=0 4
k = 4n+1

−1

3
). Since each

node contains a constant amount of work, the running time is proportional to the number of nodes.
So the running time is Θ(n2).

CS 173, Spring 17 Examlet 11, Part A 6

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

01 Wave(a1,..., an) \\ input is an array of n positive integers
02 m := 0
03 for i := 1 to n− 1
04 for j := i+ 1 to n
05 if |ai − aj | > m then m := |ai − aj |
06 return m

1. (3 points) What value does the algorithm return if the input list is 4, 13, 20, 5, 8, 10

Solution: 20− 4 = 16

2. (3 points) Let T (n) be the number of times that line 5 is executed. Express T (n) using summation
notation, directly following the structure of the code.

Solution: T (n) =

n−1∑

i=1

n∑

j=i+1

1

3. (3 points) Find an (exact) closed form for T (n). Show your work.

Solution: T (n) =

n−1∑

i=1

n∑

j=i+1

1 =

n−1∑

i=1

(n− i) = (

n−1∑

i=1

n)− (

n−1∑

i=1

i) = n(n− 1)− n(n− 1)

2
=

n(n− 1)

2

4. (3 points) What is the big-theta running time of Wave?

Solution: Θ(n2)

5. (3 points) Check the (single) box that best characterizes each item.

The running time of mergesort is
recursively defined by T (1) = d and
T (n) =

2T (n− 1) + c 2T (n− 1) + cn

2T (n/2) + c 2T (n/2) + cn
√

