$\mathbb{P}(A)\cap\mathbb{P}(B)=\emptyset$

Name:												
NetID:			-	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6	
(7 points) Car C that works or b	n we create a set riefly explain wh			partit	ion of l	R bu	t C	is fini	ite?	Give	a specif	ic set
Solution: Ye reals. Then $ C =$	es. Suppose that 2, which is finite		exactly	v two s	ets: th	e ne	gative	reals	anc	d the	non-neg	gative
(8 points) Che	ck the (single) b	ox that best	charac	eterizes	each i	$ ext{tem.}$						
$\mathbb{P}(A) \cap \mathbb{P}(B) =$	$= \mathbb{P}(A \cap B)$	always $\sqrt{}$	s	sometir	nes		ne	ver				
If $n \ge k \ge 0$, then $\binom{n}{k} = \binom{n}{n-1}$	$\binom{k}{k}$	true $\sqrt{}$	tr	ue for	some n	and	k		fa	alse		
$\binom{n}{0}$	-1 0	1		2		n	-		unc	lefineo	d	

sometimes

never

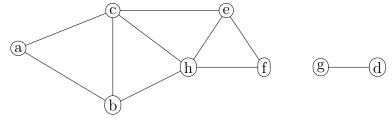
always

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Graph G is shown below with set of nodes V and set of edges E.



Let $f: V \to \mathbb{P}(V)$ such that $f(n) = \{v \in V \mid \text{ there is a cycle containing } n \text{ and } v\}$. Let $T = \{f(n) \mid n \in V\}$.

(6 points) Fill in the following values:

|E| =

Solution: 10

f(b) =

Solution: $\{a, b, c, e, f, h\}$

f(h) =

Solution: $\{a, b, c, e, f, h\}$

(7 points) Is T a partition of V? For each of the three conditions required to be a partition, explain why T does or doesn't satisfy that condition.

Solution: No, it is not a partition of V. There is no partial overlap (good). However, T contains the empty set because $f(g) = \emptyset$. And some vertices (e.g. k) do not belong to any cycles and therefore aren't in any elements of T.

(2 points) Check the (single) box that best characterizes each item.

 $\mathbb{P}(A) \cup \mathbb{P}(B) = \mathbb{P}(A \cup B)$ always sometimes $\sqrt{}$ never

Name:											
NetID:				Lecture:			A	В			
Discussion:	Thursday	Friday	10 11 12 1				2	3	4	5	6
Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R})$ Let $T = \{f(x, y)\}$		$f(x,y) = \{(y \mid x,y) = \{(y \mid x,y) \mid x \mid y \in Y\}\}$	$(p,q) \in$	$\mathbb{R}^2 \mid x^2$	$+y^{2} =$	p^2 -	$+q^2$				
(6 points) Ans	swer the following	g questions:									
f(0,0) =											
Solution: $\{(0, 0)\}$	(0,0)										
Describe (at a	high level) the e	elements of f	(0, 36)	:							
Solution: T	he circle centered	l on the origi	in with	radius	s 36.						
The cardinalit	y of (aka the nur	mber of elem	ents in) T is:							
Solution: infi	inite										
(7 points) Is T why T does or do	a partition of \mathbb{R} esn't satisfy that		of the o	conditio	ons requ	uired	to be	e a pa	rtitio	on, bi	riefly explain
Solution: Y origin) overlaps a	Tes. The output of the others.	•		- 0				circle	es (pl	lus th	ne dot at the
(2 points) Che	eck the (single) b	ox that best	charac	eterizes	each it	tem.					
Let A be a no $\{A\}$ is a parti-	- 0	alway	rs v	/	$\mathbf{sometin}$	nes		r	never]

Name:											
NetID:			_	Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
(7 points) Su Is $C_A \cup C_B$ a par	appose that A and tition of $A \cup B$?					ition	of A	and	C_B is	s a par	tition of B .
Solution: Y to exactly one elements of C_A a either.		e A and B	are disjo	oint, tl	here car	't b	e any	parti	al ov	erlap l	between the
(8 points) Ch	eck the (single) b	ox that best	charac	terizes	s each i	em.					
$ \mathbb{P}(\mathbb{P}(\emptyset)) $	0	1	2		3		4		ur	ndefine	ed
If $f: \mathbb{P}(\mathbb{Q}) \to$	\mathbb{N} then $f(3)$ is	a se	a ra et of rat	tional		;	a pow	er set		ationa idefine	
$ \{\emptyset\} $	0	1 🗸	2]	3		4		ur	ndefine	ed
$\mathbb{P}(A \cup B) = \mathbb{P}$	$\mathbb{P}(A) \cup \mathbb{P}(B)$	alway	7S] ;	$_{ m sometin}$	nes		1	never		

Name:____

NetID:_____ Lecture: A B

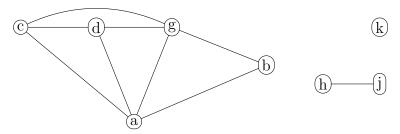
Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Graph G is at right.

V is the set of nodes.

E is the set of edges.

ab (or ba) is the edge between a and b.



Let $f:V\to \mathbb{P}(V)$ be defined by $f(n)=\{v\in V\mid \text{there is a path from n to v}\}.$ And let $T=\{f(n)\mid n\in V\}.$

6 points) Fill in the following values:

f(k) =Solution: $\{k\}$

f(d) =Solution: $\{a, b, c, d, g\}$

T =Solution: $\{\{a, b, c, d, g\}\{h, j\}\{k\}\}$

(7 points) Is T a partition of V? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

Solution: Yes, T is a partition of V. T does not contain the empty set. The members of T contain all nodes in V, with no partial overlap

(2 points) Check the (single) box that best characterizes each item.

 $\binom{n}{1}$ -1 0 1 2 n $\sqrt{}$ undefined $\boxed{}$

Name:												
NetID:			_	Lecture:			A	В				
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6	
(7 points) Ca	an a set A be a pa	artition of th	ne emp	ty set?	Briefly	y jus	tify y	our a	nswe	r.		
Solution: Y one member of A	es. Suppose that . Also, the empty					mem	ber o	f the	empt	y set	is in exact	ly
(8 points) Che	eck the (single) b	ox that best	charac	cterizes	s each i	$ ext{tem}.$						
Pascal's identification that $\binom{n+1}{k}$ is ϵ	·	$\binom{n}{k} + \binom{n}{k+1}$		$\binom{n}{k}$ -	$+\binom{n-1}{k}$			$\binom{n}{k}$	$+\binom{n}{k}$	$\binom{n}{-1}$	$\sqrt{}$	
$\mathbb{P}(A\cap B)\subseteq \mathbb{P}$	$P(A \cup B)$	always 🗸	<u>/</u>	someti	mes		n€	ever				
If $f: \mathbb{R} \to \mathbb{P}(Z)$	\mathbb{Z}) then $f(17)$ is	one c	a: or more	n integ	ĺ		a se	et of i	integower :	-	√ 	
A partition of	a set A contains	A alw	vays		some	$_{ m time}$	\mathbf{s}	/	nev	ver		