Name:_

NetID: Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday **Friday** 10 **12** 1 $\mathbf{2}$ 3 6 11 4 5

(7 points) Can we create a set C such that C is a partition of \mathbb{R} but |C| is finite? Give a specific set C that works or briefly explain why it's impossible.

(8 points) Check the (single) box that best characterizes each item.

$$\mathbb{P}(A)\cap\mathbb{P}(B)=\mathbb{P}(A\cap B)$$

always

sometimes

never

If $n \ge k \ge 0$, then $\binom{n}{k} = \binom{n}{n-k}$

true

true for some n and k

false

undefined

 $\mathbb{P}(A) \cap \mathbb{P}(B) = \emptyset$

always

sometimes

never

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Graph G is shown below with set of nodes V and set of edges E.

Let $f: V \to \mathbb{P}(V)$ such that $f(n) = \{v \in V \mid \text{ there is a cycle containing } n \text{ and } v\}$. Let $T = \{f(n) \mid n \in V\}$.

(6 points) Fill in the following values:

$$|E| =$$

$$f(b) =$$

$$f(h) =$$

(7 points) Is T a partition of V? For each of the three conditions required to be a partition, explain why T does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

 $\mathbb{P}(A) \cup \mathbb{P}(B) = \mathbb{P}(A \cup B)$

always

sometimes

never

Name:											
NetID:			_	Lecture:		${f A}$	В				
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
Let $f: \mathbb{R}^2 \to \mathbb{P}(\mathbb{R})$ Let $T = \{f(x, y)\}$		$f(x,y) = \{($	$p,q) \in$	$\mathbb{R}^2 \mid x^2$	$x^{2} + y^{2} =$	$=p^2$	$+q^2$				
(6 points) Ans	swer the followin	g questions:									
f(0,0) =											
Describe (at a	high level) the	elements of j	f(0, 36)	:							
The cardinalit	y of (aka the nu	mber of elem	nents in	n) T is:							
(7 points) Is T why T does or do	'a partition of \mathbb{R} esn't satisfy tha		of the o	conditi	ons req	uired	d to b	e a pa	artitie	on, br	riefly explain
(2 points) Che	eck the (single) b	oox that best	charac	cterizes	each i	tem.					
Let A be a no $\{A\}$ is a partic		alway	ys	s	sometin	mes		r	ıever]

Name:											
NetID:			<u>-</u>	Lecture:			\mathbf{A}	В	3		
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
(7 points) Su Is $C_A \cup C_B$ a par	ppose that A and tition of $A \cup B$?					tition	\mathbf{a} of A	and	C_B is	a par	tition of B .
(8 points) Che	eck the (single) b	ox that best	charac	cterizes	each i	$ ext{tem}.$	_				
$ \mathbb{P}(\mathbb{P}(\emptyset)) $	0	1	2] ;	3		4		un	define	d
If $f: \mathbb{P}(\mathbb{Q}) \to$	\mathbb{N} then $f(3)$ is	a se	a ra	ational tionals			a pow			ationa idefine	
{∅}	0	1	2] ;	3		4		un	define	d
$\mathbb{P}(A \cup B) = \mathbb{P}$	$P(A) \cup P(B)$	alway	vs] ,	sometir	nes		1	never		

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

Graph G is at right. V is the set of nodes. E is the set of edges. ab (or ba) is the edge between a and b.

Let $f: V \to \mathbb{P}(V)$ be defined by $f(n) = \{v \in V \mid \text{there is a path from n to v}\}$. And let $T = \{f(n) \mid n \in V\}$.

6 points) Fill in the following values:

$$f(k) =$$

$$f(d) =$$

$$T =$$

(7 points) Is T a partition of V? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

(2 points) Check the (single) box that best characterizes each item.

- $\binom{n}{1}$
- -1
- 0
- 1
- 2
- n

undefined

A partition of a set A contains A

Name: NetID:				Lecture:			${f A}$	В		
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5 6
(7 points) Ca	n a set A be a pa	artition of th	ie empt	y set?	Briefly	jus	tify yo	our ai	nswer.	
(8 points) Che	eck the (single) b	ox that best	charac	eterizes	each i	tem.				
Pascal's iden that $\binom{n+1}{k}$ is ϵ	-	$\binom{n}{k} + \binom{n}{k+1}$		$\binom{n}{k}$ -	$+\binom{n-1}{k}$			$\binom{n}{k}$	$+\binom{n}{k-1}$	
$\mathbb{P}(A\cap B)\subseteq \mathbb{P}$	$(A \cup B)$	always	S	ometin	nes		nev	ver [
If $f: \mathbb{R} \to \mathbb{P}(\mathbb{Z})$	\mathbb{Z}) then $f(17)$ is	one o	aı r more	n integ			a se		ntegers wer set	

always

sometimes

never