Discussion: 6 5 Name:_______ Lecture: A B **10** Friday (15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s. 11 **12** 1 2 3 4 Draw a deterministic phone lattice that accepts sequences of words from the following list, separated by spaces. mouse, moose, mooses, goose, moon Thursday A sample input might be "moon mooses goose". Your lattice should allow one or more spaces between each pair of consecutive words. Show the space character as \square in your lattice. Do not allow any spaces at the start or end of the sequence. Use no more than 16 states and, if you can, no more than 14. ## Solution: | Name: | | | | | | | | | | | | |---|---|-------------------|-------|-----------|-----------|---------|----------|--------|------|--------|-----| | NetID: | | | Ī | ${f L}$ | ectur | ecture: | | В | | | | | Discussion: | Thursday | Friday | 10 | 1 | l 12 | 1 | 2 | 3 | 4 | 5 | 6 | | (5 points) An
plus a rational nu
justify your answe | , | | | | | | | | ` | , _ | , | | Solution: T plus a triple of cotthis is a finite pro | | rational num | bers | are co | _ | | | _ | | | | | (10 points) Ch | neck the (single) | box that bes | t cha | racter | rizes eac | h iten | 1. | | | | | | * | n from the intege
as a correspondin
ormula. | | e [| | false | | n | ot kne | own | | | | $\mathbb{P}(\mathbb{R})$ has the s | same cardinality a | as \mathbb{R} . | e | | false | | n | ot kne | own | | | | A subset of a is countable. | countable set | tru | e [| $\sqrt{}$ | false | | | | | | | | All circles in t | the real plane. | finite | | count | tably in | finite | | u | ncou | ntable | e 🗸 | | | a program that
her an input prog | gram tru | e [| | false | | n | ot kne | own | | | Name: NetID: Lecture: \mathbf{A} \mathbf{B} 3 Thursday Friday 2 Discussion: **10 12** 1 4 6 11 5 (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$. Reflexive: Irreflexive: Symmetric: Antisymmetric: Transitive: (10 points) Check the (single) box that best characterizes each item. $p \vee q \equiv \neg p \to q$ false true $gcd(p,q) = \frac{pq}{lcm(p,q)}$ sometimes always never (p and q positive integers)true for all sets A true for some sets A |A - B| = |A| - |B|false for all sets A A function from \mathbb{R} to \mathbb{R} is strictly A function from \mathbb{R} to \mathbb{R} is strictly increasing if and only if it is one-to-one. true false $\sqrt{}$ All elements of M are also elements of X. M = X $M \subseteq X$ $X \subseteq M$ | Name: | | | | | | | | | | | | | |-----------------------------------|---|--------------------|----------------------------------|-------------|-------------|---|--------------|--------------------|-----------|------------------|-----------------------|--------| | NetID: | | | - | Lecture: | | | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | | (5 points) Is | the graph C_7 bip | artite? Brief | fly just | ify you | r answ | er. | | | | | | | | Solution: N
subsets in an alte | No, it isn't bipart
ernating manner. | | | | - | | | | _ | node | es to t | he two | | (10 points) Cl | neck the (single) | box that bes | st chara | acterize | es each | item | | | | | | | | $\sum_{k=-2}^{n} k^2$ | $\sum_{p=0}^{n+2} (p+2)^2 \Big[$ | $\sum_{p=0}^{n-2}$ | (p-2) |)2 |] | $\sum_{p=0}^{n+2} \left(p \right)^{n+2}$ | (p-2) | 2 | $\sqrt{}$ | $\sum_{p=1}^{n}$ | $\sum_{i=0}^{+2} p^2$ | | | recursively by | i numbers can be $F(0) = 0, F(1) = (n) + F(n-1) \text{ for } n = 0$ | =1, and | $n \ge 0$ | | $n \ge$ | ≥ 1 | $\sqrt{}$ | | $n \ge$ | 2 | | | | $n^{1.5}$ is | $\Theta(n^{1}$ | 414) | O(n) | $^{1.414})$ | | ne | ither | of the | ese | | | | | | r of leaves in a
lete 5-ary tree of | | ✓ | $\leq 5^h$ | | | $\geq 5^h$ | | | 5^{h+1} | ¹ – 1 | | | T(1) = c $T(n) = 4T(n/2)$ | $\Theta(\log 2) + n$ $\Theta(n^2)$ | | $\Theta(\sqrt{n})$ $\Theta(n^3)$ | | $\Theta(n)$ | | | $\theta(n \log n)$ | _ / | | | |