Discussion:

6

5

Name:_______ Lecture: A B

10

Friday

(15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s.

11

12

1

2

3

4

Draw a deterministic phone lattice that accepts sequences of words from the following list, separated by spaces.

mouse, moose, mooses, goose, moon

Thursday

A sample input might be "moon mooses goose".

Your lattice should allow one or more spaces between each pair of consecutive words. Show the space character as \square in your lattice. Do not allow any spaces at the start or end of the sequence. Use no more than 16 states and, if you can, no more than 14.

Solution:

Name:											
NetID:			Ī	${f L}$	ectur	ecture:		В			
Discussion:	Thursday	Friday	10	1	l 12	1	2	3	4	5	6
(5 points) An plus a rational nu justify your answe	,								`	, _	,
Solution: T plus a triple of cotthis is a finite pro		rational num	bers	are co	_			_			
(10 points) Ch	neck the (single)	box that bes	t cha	racter	rizes eac	h iten	1.				
*	n from the intege as a correspondin ormula.		e [false		n	ot kne	own		
$\mathbb{P}(\mathbb{R})$ has the s	same cardinality a	as \mathbb{R} .	e		false		n	ot kne	own		
A subset of a is countable.	countable set	tru	e [$\sqrt{}$	false						
All circles in t	the real plane.	finite		count	tably in	finite		u	ncou	ntable	e 🗸
	a program that her an input prog	gram tru	e [false		n	ot kne	own		

Name: NetID: Lecture: \mathbf{A} \mathbf{B} 3 Thursday Friday 2 Discussion: **10 12** 1 4 6 11 5 (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$. Reflexive: Irreflexive: Symmetric: Antisymmetric: Transitive: (10 points) Check the (single) box that best characterizes each item. $p \vee q \equiv \neg p \to q$ false true $gcd(p,q) = \frac{pq}{lcm(p,q)}$ sometimes always never (p and q positive integers)true for all sets A true for some sets A |A - B| = |A| - |B|false for all sets A A function from \mathbb{R} to \mathbb{R} is strictly

A function from \mathbb{R} to \mathbb{R} is strictly increasing if and only if it is one-to-one.

true false $\sqrt{}$

All elements of M are also elements of X.

M = X $M \subseteq X$ $X \subseteq M$

Name:												
NetID:			-	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6	
(5 points) Is	the graph C_7 bip	artite? Brief	fly just	ify you	r answ	er.						
Solution: N subsets in an alte	No, it isn't bipart ernating manner.				-				_	node	es to t	he two
(10 points) Cl	neck the (single)	box that bes	st chara	acterize	es each	item						
$\sum_{k=-2}^{n} k^2$	$\sum_{p=0}^{n+2} (p+2)^2 \Big[$	$\sum_{p=0}^{n-2}$	(p-2))2]	$\sum_{p=0}^{n+2} \left(p \right)^{n+2}$	(p-2)	2	$\sqrt{}$	$\sum_{p=1}^{n}$	$\sum_{i=0}^{+2} p^2$	
recursively by	i numbers can be $F(0) = 0, F(1) = (n) + F(n-1) \text{ for } n = 0$	=1, and	$n \ge 0$		$n \ge$	≥ 1	$\sqrt{}$		$n \ge$	2		
$n^{1.5}$ is	$\Theta(n^{1}$	414)	O(n)	$^{1.414})$		ne	ither	of the	ese			
	r of leaves in a lete 5-ary tree of		✓	$\leq 5^h$			$\geq 5^h$			5^{h+1}	¹ – 1	
T(1) = c $T(n) = 4T(n/2)$	$\Theta(\log 2) + n$ $\Theta(n^2)$		$\Theta(\sqrt{n})$ $\Theta(n^3)$		$\Theta(n)$			$\theta(n \log n)$	_ /			