Name:											
NetID:				Lec	cture:		\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6

(15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s.

Draw a deterministic phone lattice that accepts sequences of words from the following list, separated by spaces.

mouse, moose, mooses, goose, moon

A sample input might be "moon mooses goose".

Your lattice should allow one or more spaces between each pair of consecutive words. Show the space character as \square in your lattice. Do not allow any spaces at the start or end of the sequence. Use no more than 16 states and, if you can, no more than 14.

Name:											
NetID:			_	Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
(5 points) An plus a rational nu justify your answe											
(10 points) Ch	neck the (single)	box that be	est char	acteriz	es each	item	1.				
*	n from the intege as a correspondin ormula.	ng	ue] :	false		no	ot kno	own		
$\mathbb{P}(\mathbb{R})$ has the s	same cardinality a	as \mathbb{R} .	ue] :	false		no	ot kno	own		
A subset of a is countable.	countable set	${ m tr}$	ue		false						
All circles in t	he real plane.	finite		countal	bly infir	nite		u	ncour	ntable	·
	a program that er an input prog	gram tr	ue] :	false		no	ot kno	own		

Name:												
NetID:			_	Lec	ture:		\mathbf{A}	В				
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6	
(5 points) C	heck all boxes th	at correctly	charact	terize t	his relat	tion	on th	e set	$\{A,$	B, C,	D, E,	F.
A A B M	$C \longrightarrow E$ \downarrow \downarrow $D \longleftarrow F$		Sym	exive: nmetric			eflexi		ic:			
(10 points) Cl	heck the (single)	box that bes	st chara	acterize	es each i	item						
$p \vee q \equiv \neg p \rightarrow$	q	tru	ıe		false							
$gcd(p,q) = \frac{1}{lc}$ $(p \text{ and } q \text{ posit})$		always		SOI	metimes	, [nev	er			
A - B = A	- B	for all sets A			true for	SOL	ne set	s A				
	om \mathbb{R} to \mathbb{R} is strand only if it is on	e-to-	rue		false							
All elements of X .	of M are also elem	nents M	T = X		$M \subseteq$	$\subseteq X$			X	$\subseteq M$		

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(5 points) Is the graph C_7 bipartite? Briefly justify your answer.

(10 points) Check the (single) box that best characterizes each item.

$$\sum_{k=-2}^{n} k^2 \qquad \qquad \sum_{p=0}^{n+2} (p+2)^2 \quad \boxed{ } \qquad \qquad \sum_{p=0}^{n-2} (p-2)^2 \quad \boxed{ } \qquad \qquad \sum_{p=0}^{n+2} (p-2)^2 \quad \boxed{ } \qquad \qquad \sum_{p=0}^{n+2} p^2 \quad \boxed{ } \qquad \boxed{ }$$

The Fibonacci numbers can be defined recursively by F(0) = 0, F(1) = 1, and F(n+1) = F(n) + F(n-1) for all integers ...

$$n \ge 0$$
 $n \ge 1$ $n \ge 2$

 $n^{1.5}$ is $\Theta(n^{1.414})$ neither of these

Total number of leaves in a full and complete 5-ary tree of height h

$$5^h \qquad \qquad \leq 5^h \qquad \qquad \geq 5^h \qquad \qquad 5^{h+1} - 1 \qquad \qquad$$

$$T(1) = c \qquad \qquad \Theta(\log n) \qquad \qquad \Theta(\sqrt{n}) \qquad \qquad \Theta(n) \qquad \qquad \Theta(n \log n) \qquad \qquad \\ T(n) = 4T(n/2) + n \qquad \qquad \Theta(n^2) \qquad \qquad \Theta(n^3) \qquad \qquad \Theta(2^n) \qquad \qquad \Theta(3^n) \qquad \qquad \qquad$$