| Name: | | | | | | | | | | | | |-------------|----------|--------|----|-----|--------|---|--------------|---|---|---|---| | NetID: | | | | Lec | cture: | | \mathbf{A} | В | | | | | Discussion: | Thursday | Friday | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | (15 points) Recall that a phone lattice is a state diagram representing sequences of letters. Each edge in a phone lattice has a single letter on it. In a "deterministic" state diagram, if you look at any state s and any letter a, there is never more than one edge labelled a leaving state s. Draw a deterministic phone lattice that accepts sequences of words from the following list, separated by spaces. mouse, moose, mooses, goose, moon A sample input might be "moon mooses goose". Your lattice should allow one or more spaces between each pair of consecutive words. Show the space character as \square in your lattice. Do not allow any spaces at the start or end of the sequence. Use no more than 16 states and, if you can, no more than 14. | Name: | | | | | | | | | | | | |---|---|-------------------|----------|----------|-----------|------|--------------|--------|-------|--------|---| | NetID: | | | _ | Lecture: | | | \mathbf{A} | В | | | | | Discussion: | Thursday | Friday | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | (5 points) An
plus a rational nu
justify your answe | (10 points) Ch | neck the (single) | box that be | est char | acteriz | es each | item | 1. | | | | | | * | n from the intege
as a correspondin
ormula. | ng | ue |] : | false | | no | ot kno | own | | | | $\mathbb{P}(\mathbb{R})$ has the s | same cardinality a | as \mathbb{R} . | ue |] : | false | | no | ot kno | own | | | | A subset of a is countable. | countable set | ${ m tr}$ | ue | | false | | | | | | | | All circles in t | he real plane. | finite | | countal | bly infir | nite | | u | ncour | ntable | · | | | a program that
er an input prog | gram tr | ue |] : | false | | no | ot kno | own | | | | Name: | | | | | | | | | | | | | |--|--|----------------|----------|-------------------|---------------|---------------|--------------|-------|--------|---------------|-------|----| | NetID: | | | _ | Lec | ture: | | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | | (5 points) C | heck all boxes th | at correctly | charact | terize t | his relat | tion | on th | e set | $\{A,$ | B, C, | D, E, | F. | | A
A
B
M | $C \longrightarrow E$ \downarrow \downarrow $D \longleftarrow F$ | | Sym | exive:
nmetric | | | eflexi | | ic: | | | | | (10 points) Cl | heck the (single) | box that bes | st chara | acterize | es each i | item | | | | | | | | $p \vee q \equiv \neg p \rightarrow$ | q | tru | ıe | | false | | | | | | | | | $gcd(p,q) = \frac{1}{lc}$ $(p \text{ and } q \text{ posit})$ | | always | | SOI | metimes | , [| | nev | er | | | | | A - B = A | - B | for all sets A | | | true for | SOL | ne set | s A | | | | | | | om \mathbb{R} to \mathbb{R} is strand only if it is on | e-to- | rue | | false | | | | | | | | | All elements of X . | of M are also elem | nents M | T = X | | $M \subseteq$ | $\subseteq X$ | | | X | $\subseteq M$ | | | Name:____ NetID:_____ Lecture: A B Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6 (5 points) Is the graph C_7 bipartite? Briefly justify your answer. (10 points) Check the (single) box that best characterizes each item. $$\sum_{k=-2}^{n} k^2 \qquad \qquad \sum_{p=0}^{n+2} (p+2)^2 \quad \boxed{ } \qquad \qquad \sum_{p=0}^{n-2} (p-2)^2 \quad \boxed{ } \qquad \qquad \sum_{p=0}^{n+2} (p-2)^2 \quad \boxed{ } \qquad \qquad \sum_{p=0}^{n+2} p^2 \quad \boxed{ } \qquad \boxed{ }$$ The Fibonacci numbers can be defined recursively by F(0) = 0, F(1) = 1, and F(n+1) = F(n) + F(n-1) for all integers ... $$n \ge 0$$ $n \ge 1$ $n \ge 2$ $n^{1.5}$ is $\Theta(n^{1.414})$ neither of these Total number of leaves in a full and complete 5-ary tree of height h $$5^h \qquad \qquad \leq 5^h \qquad \qquad \geq 5^h \qquad \qquad 5^{h+1} - 1 \qquad \qquad$$ $$T(1) = c \qquad \qquad \Theta(\log n) \qquad \qquad \Theta(\sqrt{n}) \qquad \qquad \Theta(n) \qquad \qquad \Theta(n \log n) \qquad \qquad \\ T(n) = 4T(n/2) + n \qquad \qquad \Theta(n^2) \qquad \qquad \Theta(n^3) \qquad \qquad \Theta(2^n) \qquad \qquad \Theta(3^n) \qquad \qquad \qquad$$