Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 10 11 12 1 2 3 4 5 6

(15 points) Professor Martinez needs a state machine that will recognize the sequence 11122 when typed on a keypad. Specifically, it must read any sequence of the digits 0, 1, and 2. It should move into a final state immediately after seeing 11122, and then remain in that final state as further characters come in. For efficiency, the state machine must be deterministic, i.e. if you look at any state s and any action s, there is **exactly** one edge labelled s leaving state s.

Draw a deterministic state diagram that will meet his needs, using no more than 9 states and, if you can, no more than 6.

Solution:

Name:											
NetID:			<u>-</u>	Lecture			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
(5 points) Le answer.	t A be the set of	all relations	on \mathbb{N} .	Is A co	ountabl	e or	uncou	ıntabl	le? B	Briefly	justify your
Solution: To number is never to each natural number where A' is uncountable.	ber is related to in hat the set of fundamental to the set of fundamental to the set of	rent number. tself. That is actions from t	To sp s, we cr the nat	pecify a reate a	an elem functio	ent on the	of A' , and a natural	we ha ral nu	ave t ımbe	o spe rs to	cify whether {true, false}.
(10 points) Cl	heck the (single)	box that bes	t char	acterize	es each	item	١.				
	numbers have ity as the reals.	the tru	e] f	alse [$\sqrt{}$	n	ot kno	own		
A product of is countable.	countable sets	true	fal	se	t	rue f	or fini	ite pro	oduc	ts	$\sqrt{}$
-	ties for what ed on your lap-ve.	finite $\sqrt{}$	/	countal	bly infi	nite		u	ncou	ntabl	е
The set of all numbers.	-	finite	cot	ıntably	' infinit	e [$\sqrt{}$	unc	ount	able	
Every mather finite formula	natical function l	nas a tru	e] _f	alse	1/	n	ot kno	own		

Name:											
NetID:			_	Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
(5 points) Is the showing that it is	he following clain not.	n true? Infor	rmally e	explain	why it	is, o	r give	a cor	icrete	coun	iter-example
Claim: For a	all positive intege	$\operatorname{rs} a, b, \text{ and } c$, if gcd(a, b) =	1 and g	$\gcd(l$	(b,c) =	= 1, th	nen go	$\mathrm{cd}(a, a)$	c) = 1.
Solution: The $gcd(a,b) = 1$. Also	his is false. Conso b and c have no										factors, i.e.
(10 points) Ch	neck the (single)	box that bes	st chara	cterize	es each i	item	.•				
$\forall x \in \mathbb{R},$ if $x^2 > 100$, th	$ x \ge 10. $	tru	ie 🗸	/	false						
$\{1,2\}\cap\emptyset=$	Ø {Ø}		$\{(1,\emptyset),\{1,2\}$	$(2,\emptyset)\}$				$[2,\emptyset]$ defined			
If xRy is never relation R is	er true, then the	symme both	etric [<u>√</u>	antis neitl		netrio				
If a function for it must be one	$\operatorname{rom} \mathbb{R} \text{ to } \mathbb{R} \text{ is in } $ e-to-one.	0,	rue _		false		$\sqrt{}$				
	mber of a graph at least one edge			2	$\sqrt{}$		3		C	an't	tell

Name:											
NetID:				Lecture:			\mathbf{A}	В			
Discussion:	Thursday	Friday	10	11	12	1	2	3	4	5	6
(5 points) Su	ppose that $f: \mathbb{N}$	$\to \mathbb{N}$ is such	that f	r(n) =	n^2 . Given	ve a	recurs	sive de	efinit	ion o	f f
Solution:											
f(0) = 0, and	f(n+1) = f(n)	+2n+1 for	$r \ n \ge 0$								
You could also	be have used $f(n)$	$= f(n-1) \cdot$	+2n -	1 for η	$n \ge 1$.						
(10 points) Cl	neck the (single)	box that bes	st chara	acterize	es each	item	۱.				
$\sum_{k=1}^{n} \frac{1}{2^k}$	$1 - (\frac{1}{2})^{n-1} \boxed{}$	2 –	$\left(\frac{1}{2}\right)^n$		1 –	$\left(\frac{1}{2}\right)^n$		·	2 –	$\left(\frac{1}{2}\right)^{n}$	-1
· ·	Toblem of size n h of size n/m , h time when		k < k >		√ 	k km	= m $= 1$				
3^n is	$\Theta(5^n)$		$O(5^n)$	$\sqrt{}$	nei	ther	of the	ese			
The diameter 7-ary tree of h	of a full, complaight h .	ete $\leq h$ $2h$		h $7h$			h+1 $7h+1$	1			

 $\binom{k}{k-1}$ 1 2 2 k-1 k $\sqrt{}$ undefined