Name:

 NetID:
 Lecture:
 B

 Discussion:
 Friday
 11
 12
 1
 2
 3
 4
 5

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

Claim: For all positive integers a, b, and c, if gcd(a,bc) > 1, then gcd(a,b) > 1 and gcd(a,c) > 1.

2. (6 points) Use the Euclidean algorithm to compute gcd(1012, 299). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

7 | 0 true false

 $k \equiv -k \pmod{k}$ always sometimes never

Name:										
NetID:						Lecture:			В	
Discussion:	Friday	11	12	1	2	3	4	5		

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

Claim: For all non-zero integers a and b, if $a \mid b$ and $b \mid a$, then a = b.

2. (6 points) Use the Euclidean algorithm to compute gcd(2737, 2040). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

 $29 \equiv 2 \pmod{9}$

true

false

ery .

true

false

Two positive integers p and q are relatively prime if and only if gcd(p,q) > 1.