Name:

NetID: Lecture: B

Discussion: Thursday Friday 11 12 1 2 3 4

 $A = \{(a, b) \in \mathbb{R}^2 : a = 3 - b^2\}$

 $B = \{(x, y) \in \mathbb{R}^2 : |x| \ge 1 \text{ or } |y| \ge 1\}$

Prove that $A \subseteq B$. Hint: you may find proof by cases helpful.

Solution: Suppose that (a, b) is an element of A. Then, by the definition of A, $(a, b) \in \mathbb{R}^2$ and $a = 3 - b^2$.

Consider two cases, based on the magnitude of b:

Case 1: $|b| \ge 1$. Then (a, b) is an element of B. (Because it satisfies one of the two conditions in the OR.)

Case 2: |b| < 1. Then $b^2 < 1$. Then $a = 3 - b^2 > 3 - 1 = 2$. So $|a| \ge 1$, which means that (a, b) is an element of B.

So (a, b) is an element of B in both cases, which is what we needed to show.

CS 173, Fall 18

Examlet 3, Part A

_	
٠.	

Name:

NetID:_____ Lecture: B

Discussion: Thursday Friday 11 12 1 2 3 4

$$A = \{(x,y) \in \mathbb{Z}^2 \ | \ 2xy + 6y - 5x - 15 \ge 0\}$$

$$B = \{(a, b) \in \mathbb{Z}^2 \mid a \ge 0\}$$

$$C = \{(p,q) \in \mathbb{Z}^2 \mid q \ge 0\}$$

Prove that $(A \cap B) \subseteq C$.

Solution: Suppose that (x, y) is an element of $(A \cap B)$. This means that (x, y) is an element of A and (x, y) is an element of B. So $2xy + 6y - 5x - 15 \ge 0$ and $x \ge 0$, by the definitions of A and B.

Notice that 2xy + 6y - 5x - 15 = (x+3)(2y-5). So $(x+3)(2y-5) \ge 0$. We know that x+3 is positive because $x \ge 0$. So we must have $(2y-5) \ge 0$.

Now, if $(2y-5) \ge 0$, then $2y \ge 5$. So $y \ge \frac{5}{2}$. So $y \ge 0$. This means that (x,y) is an element of C which is what we needed to show.