\mathbf{B}

Name:____

NetID:______ Lecture:

Discussion: Thursday Friday 11 12 1 2 3 4

1. (4 points) $A = \{\text{fox, cat}\}$ $B = \{3, 4\}$ $C = \{3, 7\}$

 $A \times (B \cap C) =$

Solution: $A \times (B \cap C) = A \times \{3\} = \{(\text{fox}, 3), (\text{cat}, 3)\}$

 $A \cap B =$

Solution: $A \cap B = \emptyset$

2. (4 points) Check the (single) box that best characterizes each item.

 $A \cap (B \cup C)$ true for all sets A,B,C $\sqrt{}$ true for some sets A,B,C $\sqrt{}$ false for all sets A,B,C

 $\forall x \in \mathbb{N}, \text{ if } x < -10, \text{ then } x = \pi.$ (\$\pi\$ is the familiar constant.) true \[\sqrt{\sqrt{}} \] false \[\] undefined \[\]

3. (7 points) In \mathbb{Z}_{11} , find the value of $[7]^{12} + [9]^5$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as [n], where $0 \le n \le 10$.

Solution:

$$[7]^2 = [49] = [5]$$

$$[7]^4 = [5^2] = [25] = [3]$$

$$[7]^8 = [3^2] = [9]$$

So
$$[7]^{12} = [7]^8 \cdot [7]^4 = [3] \cdot [9] = [27] = [5]$$

$$[9]^2 = [81] = [4]$$

$$[9]^4 = [4]^2 = [16] = 5$$

So
$$[9]^5 = [9] \cdot [5] = [45] = [1]$$

So
$$[7]^{12} + [9]^5 = [5] + [1] = [6].$$

Name:									_
NetID:					ture	e:	В		
Discussion:	Thursday	Friday	11	12	1	2	3	4	

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, if $A \times C \subseteq B \times C$, then $A \subseteq B$.

Solution: This is false. Suppose that $A = \{1, 2\}$, $B = \{10, 11\}$, and $C = \emptyset$. Then $A \times C = \emptyset = B \times C$, so $A \times C \subseteq B \times C$. But $A \not\subseteq B$.

2. (4 points) Check the (single) box that best characterizes each item.

\emptyset is	an element	of Z	a subset of	\mathbb{Z} $\sqrt{}$	both	neither	
$ A \cup B = A + B $	⊢ <i>B</i> t	crue for all sets .	A and B		true for some set	s A and B	/
		alse for all sets	A and B				

3. (7 points) In \mathbb{Z}_{11} , find the value of $[7]^{38}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

Solution:

$$[7]^{2} = [49] = [5]$$

$$[7]^{4} = ([7]^{2})^{2} = [5]^{2} = [25] = [3]$$

$$[7]^{8} = ([7]^{4})^{2} = [3]^{2} = [9] = [-2]$$

$$[7]^{1}6 = ([7]^{8})^{2} = [-2]^{2} = [4]$$

$$[7]^{3}2 = ([7]^{16})^{2} = [4]^{2} = [16] = [5]$$

$$[7]^{38} = [7]^{32} \cdot [7]^{4} \cdot [7]^{2} = [5] \cdot [3] \cdot [5] = [15] \cdot [5] = [4] \cdot [5] = [20] = [9]$$