\mathbf{B}

Name:____

NetID:______ Lecture:

Discussion: Thursday Friday 11 12 1 2 3 4

1. (4 points)
$$A = \{\text{fox, cat}\}$$
 $B = \{3, 4\}$ $C = \{3, 7\}$ $A \times (B \cap C) =$

 $A \cap B =$

2. (4 points) Check the (single) box that best characterizes each item.

$$A \cap (B \cup C)$$
 true for all sets A,B,C true for some sets A,B,C $= (A \cap B) \cup (A \cap C)$ false for all sets A,B,C

 $\forall x \in \mathbb{N}, \text{ if } x < -10, \text{ then } x = \pi.$ (π is the familiar constant.) true false undefined

3. (7 points) In \mathbb{Z}_{11} , find the value of $[7]^{12} + [9]^5$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

 $|A \cup B| = |A| + |B|$

NetID:				Lecture:			В	
Discussion:	Thursday	Friday	11	12	1	2	3	4
1. (4 points)	Is this claim true	e? Give a con	ncrete (counter	-exar	mple	or br	efly exp
For an	by sets A, B , and	C , if $A \times C$	$C \subset B \times$	C, the	$\mathrm{en}\ A$	$\subseteq B$.		
TOT and	iy 5005 71, D, and	C, II 71 × C	$\subseteq D \wedge$	· · · · · · · · · · · · · · · · · · ·	JII 71	$\subseteq D$.		
2. (4 points) (Check the (single)) box that be	est cha	racteriz	zes ea	ach it	em.	
\emptyset is	an element o	f 77.	ອ ຊາງໄ	oset of	7.		bo	oth

3. (7 points) In \mathbb{Z}_{11} , find the value of $[7]^{38}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

true for some sets A and B

true for all sets A and B

false for all sets A and B