
Name:_____

NetID:_____ Lecture: B

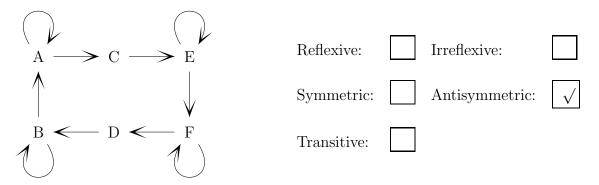
Discussion: Friday 11 12 1 2 3 4

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Let R be the equivalence relation on the real numbers such that xRy if and only if |x| = |y|. Give three members of the equivalence class [13].

Solution: 13, 13.1, 13.7

3. (5 points) Let T be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)T(p,q) if and only if $x \leq p$ or $y \leq q$. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.


Solution: This relation is not transitive. We have (0,0)T(-10,10) (look at the second coordinate). We also have (-10,10)T(-5,-5) (look at the first coordinate). But it's not the case that (0,0)T(-5,-5).

Name:_____

NetID:______ Lecture: B

Discussion: Friday 11 12 1 2 3 4

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Suppose that R is a relation on a set A. Using precise mathematical words and notation, define what it means for R to be antisymmetric.

Solution: For any $x, y \in A$, if xRy and yRx, then x = y. Or for any $x, y \in A$, if xRy and $x \neq y$, then $y \not Rx$.

3. (5 points) Let T be the relation defined on set of pairs $(x, y) \in \mathbb{R}^2$ such that (x, y)T(p, q) if and only if $x \leq p$ and $y \leq q$. Is T antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is antisymmetric. Suppose that (x, y)T(p, q) and (p, q)T(x, y). Then $x \le p$ and $y \le q$, and also $p \le x$ and $q \le y$. So x = y and y = q. So (x, y) = (p, q).