Name:
 Lecture:
 B

 Discussion:
 Friday
 11
 12
 1
 2
 3
 4

Use (strong) induction to prove the following claim:

Claim: For all integers $a, b, n, n \ge 1$, if $a \equiv b \pmod{7}$ then $a^n \equiv b^n \pmod{7}$.

Use this definition in your proof: $x \equiv y \pmod{p}$ if and only if x = y + kp for some integer k.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step:

2

Name:_____

NetID:_____ Lecture: B

Discussion: Friday 11 12 1 2 3 4

Use (strong) induction to prove the following claim

Claim: $\sum_{k=0}^{n} p^k = \frac{p^{n+1}-1}{p-1}$, for all natural numbers n and all real numbers $p \neq 1$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: