Name:____ NetID:_____ Lecture: B Discussion: Friday 11 12 1 2 3 4 1. (8 points) Suppose we have a function g defined by $$g(0) = g(1) = c$$ $g(n) = kg(n-2) + n^2$, for $n \ge 2$ where k and c are constants. Express g(n) in terms of g(n-6) (where $n \ge 6$). Show your work and simplify your answer. You do **not** need to find a closed form for g(n). **Solution:** $$g(n) = kg(n-2) + n^{2}$$ $$= k(kg(n-4) + (n-2)^{2}) + n^{2}$$ $$= k(k(kg(n-6) + (n-4)^{2}) + (n-2)^{2}) + n^{2}$$ $$= k^{3}g(n-6) + k^{2}(n-4)^{2} + k(n-2)^{2} + n^{2}$$ 2. (2 points) Suppose that $f: \mathbb{N} \to \mathbb{N}$ is such that f(n) = n!. Give a recursive definition of f Solution: $$f(0) = 1$$, and $f(n) = nf(n-1)$ for $n \ge 1$. You could also have used f(n+1) = (n+1)f(n) for $n \ge 0$. Name: NetID:_____ Lecture: B Discussion: Friday 11 12 1 2 3 4 1. (8 points) Suppose we have a function f defined by $$f(1) = 5$$ $f(n) = 3f(n-1) + n^2 \text{ for } n \ge 2$ Express f(n) in terms of f(n-3) (where $n \ge 4$). Show your work and simplify your answer. You do **not** need to find a closed form for f(n). **Solution:** $$f(n) = 3f(n-1) + n^{2}$$ $$= 3(3f(n-2) + (n-1)^{2}) + n^{2}$$ $$= 3(3(3f(n-3) + (n-2)^{2}) + (n-1)^{2}) + n^{2}$$ $$= 27f(n-3) + 9(n-2)^{2} + 3(n-1)^{2} + n^{2}$$ 2. (2 points) Suppose that G_0 is the graph consisting of a single vertex. Also suppose that the graph G_n consists of a copy of G_{n-1} plus an extra vertex v and edges joining v to each vertex in G_{n-1} . Give a clear picture or precise description of G_4 . **Solution:** This is a recursive construction of all the complete graphs, except for the indexing being off by one. So G_4 is just K_5 .