Name:____

NetID:_____ Lecture: B

Discussion: Friday 11 12 1 2 3 4

1. (8 points) Suppose we have a function g defined by

$$g(0) = g(1) = c$$

 $g(n) = kg(n-2) + n^2$, for $n \ge 2$

where k and c are constants. Express g(n) in terms of g(n-6) (where $n \ge 6$). Show your work and simplify your answer. You do **not** need to find a closed form for g(n).

2. (2 points) Suppose that $f: \mathbb{N} \to \mathbb{N}$ is such that f(n) = n!. Give a recursive definition of f

Name:

NetID:_____ Lecture: B

Discussion: Friday 11 12 1 2 3 4

1. (8 points) Suppose we have a function f defined by

$$f(1) = 5$$

 $f(n) = 3f(n-1) + n^2 \text{ for } n \ge 2$

Express f(n) in terms of f(n-3) (where $n \ge 4$). Show your work and simplify your answer. You do **not** need to find a closed form for f(n).

2. (2 points) Suppose that G_0 is the graph consisting of a single vertex. Also suppose that the graph G_n consists of a copy of G_{n-1} plus an extra vertex v and edges joining v to each vertex in G_{n-1} . Give a clear picture or precise description of G_4 .