Name:____

NetID:_____ Lecture: B

Discussion: Friday 11 12 1 2 3 4

(15 points) Use (strong) induction to prove the following claim:

Claim: For all integers $n \ge 2$, $(2n)! > 2^n n!$

Solution:

Proof by induction on n.

Base Case(s): At n = 2, (2n)! = 4! = 24. $2^n n! = 4 \cdot 2 = 8$. So $(2n)! > 2^n n!$

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(2n)! > 2^n n!$ for all n = 2, 3, ..., k for some integer $k \ge 2$.

Inductive Step: Notice that $2k + 1 \ge 1$ because k is positive. And $(2k)! > 2^k k!$ by the induction hypothesis.

So then

 $(2(k+1))! = (2k+2)(2k+1)(2k)! \ge (2k+2)(2k)! > (2k+2)(2^kk!) = (k+1)2^{k+1}k! = 2^{k+1}(k+1)!$ So $(2(k+1))! > 2^{k+1}(k+1)!$ which is what we needed to show. Name:

NetID:_____ Lecture: B

Discussion: Friday 11 12 1 2 3 4

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x > -1, $(1+x)^n \ge 1 + nx$.

Let x be a real number with x > -1.

Solution:

Proof by induction on n.

Base Case(s): At n = 0, $(1 + x)^n = (1 + x)^0 = 1$ and 1 + nx = 1 + 0 = 1. So $(1 + x)^n \ge 1 + nx$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Suppose that $(1+x)^n \ge 1 + nx$ for any natural number $n \le k$, where k is a natural number.

Inductive Step: By the inductive hypothesis $(1+x)^k \ge 1 + kx$. Notice that (1+x) is positive since x > -1. So $(1+x)^{k+1} \ge (1+x)(1+kx)$.

But $(1+x)(1+kx) = 1 + x + kx + kx^2 = 1 + (1+k)x + kx^2$.

And $1 + (1+k)x + kx^2 \ge 1 + (1+k)x$ because kx^2 is non-negative.

So $(1+x)^{k+1} \ge (1+x)(1+kx) \ge 1+(1+k)x$, and therefore $(1+x)^{k+1} \ge 1+(1+k)x$, which is what we needed to show.