CS 173, Fall 18 Examlet 10, Part B 1

Name:

NetlID: Lecture: B
Discussion: Friday 11 12 1 2 3 4

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 4.
T(4) =1 T(n)=2T (%) +d
(a) The height: log,n —1

(b) Number of nodes at level k: 2F

(¢) Sum of the work in all the leaves (please simplify):
Each leaf contains the value 7, and there are 2!°#1"~1 = %21°g4 = %\/ﬁ leaves. So the sum is

V.

Change of base formula: log, n = (log, n)(log, a)

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if
f(n) < g(n).

2n 43" n? 100log n 331 3nlog(n?) !+ 2 173n — 173

Solution:

3B <« 100logn < 173n—173 < 3nlog(n?) <« n® <« 2"+3" < Tnl+2

CS 173, Fall 18

Examlet 10, Part B

Name:
NetlD: Lecture: B
Discussion: Friday 11 12 1 2 3 4

1. (7 points) You found the following claim on a hallway whiteboard. Suppose that f and g are
increasing functions from the reals to the reals, for which all output values are > 1. If f(x) is
O(g(z)), then log(f(z)) is O(log(g(z))). Is this true? Briefly justify your answer.

Solution:

Yes, it is true. Suppose that f(z) is O(g(x)).

Then there are positive reals ¢ and k such that

f(z) < cg(x) for all x > k. Then log(f(x)) < loge + log(g(x)) for all z > k. Since g(z) is

an increasing function and ¢ isn’t, there is some K > k such that loge < log(g(x)).

So then

log(f(z)) < 2log(g(x)) for all x > K. So log(f(z)) is O(log(g(z))).

[You don’t need this much technical detail for full credit. We can ignore the other inequality from
the definition of big-O because the two functions always output positive values.|

2. (8 points) Check the (single) box that best characterizes each item.

T(l)=d
T(n)=3T(n/3) +c
logs n is

Dividing a problem of size n into m sub-
problems, each of size n/k, has the best
big-© running time when

otogn) || ewm || em
om) | v| ew) o)
otogn) || ewm [em)
o) || ew) || ew
Oflogsn) | v| Ollogym)
E<m
k>m |4/

O(nlogn)
o(3")

O(nlogn)
o(3")

v
L]

neither of these

km=1

