Name:

NetID:_____ Lecture: B

Discussion: Friday 11 12 1 2 3 4

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 4.

$$T(4) = 7 T(n) = 2T\left(\frac{n}{4}\right) + d$$

- (a) The height: $\log_4 n 1$
- (b) Number of nodes at level k: 2^k
- (c) Sum of the work in all the leaves (please simplify): Each leaf contains the value 7, and there are $2^{\log_4 n 1} = \frac{1}{2} 2^{\log 4} = \frac{1}{2} \sqrt{n}$ leaves. So the sum is $\frac{7}{2} \sqrt{n}$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

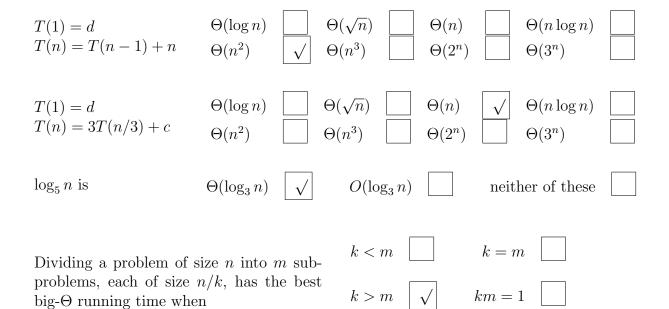
2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

$$2^{n} + 3^{n}$$
 n^{3} $100 \log n$ 3^{31} $3n \log(n^{3})$ $7n! + 2$ $173n - 173$

Solution:

$$3^{31} \ll 100 \log n \ll 173n - 173 \ll 3n \log(n^3) \ll n^3 \ll 2^n + 3^n \ll 7n! + 2$$

$\mathbf{Name:}$									
NetID:						Lecture:		В	
Discussion:	Friday	11	12	1	2	3	4		


1. (7 points) You found the following claim on a hallway whiteboard. Suppose that f and g are increasing functions from the reals to the reals, for which all output values are > 1. If f(x) is O(g(x)), then $\log(f(x))$ is $O(\log(g(x)))$. Is this true? Briefly justify your answer.

Solution:

Yes, it is true. Suppose that f(x) is O(g(x)). Then there are positive reals c and k such that $f(x) \leq cg(x)$ for all $x \geq k$. Then $\log(f(x)) \leq \log c + \log(g(x))$ for all $x \geq k$. Since g(x) is an increasing function and c isn't, there is some $K \geq k$ such that $\log c \leq \log(g(x))$. So then $\log(f(x)) \leq 2\log(g(x))$ for all $x \geq K$. So $\log(f(x))$ is $O(\log(g(x)))$.

[You don't need this much technical detail for full credit. We can ignore the other inequality from the definition of big-O because the two functions always output positive values.]

2. (8 points) Check the (single) box that best characterizes each item.

