Name:_____

NetID:_____ Lecture: B

Discussion: Friday 11 12 1 2 3 4

 $\begin{aligned} & \text{Graph } G \text{ is at right.} \\ & V \text{ is the set of nodes in } G. \\ & M = \{0,1,2,3,4\} \end{aligned}$

Define $f: M \to \mathbb{P}(V)$ by $f(n) = \{p \in V : d(p, E) = n\}$, where d(a, b) is the (shortest-path) distance between a and b. Let $P = \{f(n) \mid n \in M\}$.

(6 points) Fill in the following values:

$$f(0) =$$

Solution: $\{E\}$

f(1) =

Solution: $\{D, H\}$

P =

Solution: $\{\emptyset, \{E\}, \{D, H\}, \{C, B, A\}\}$

(7 points) Is P a partition of V? For each of the conditions required to be a partition, briefly explain why P does or doesn't satisfy that condition.

Solution: No, P is not a partition of V. The subsets cover all of V with no partial overlap. However, P contains the empty set, since $f(3) = f(4) = \emptyset$.

(2 points) Check the (single) box that best characterizes each item.

 $\mathbb{P}(A) \cap \mathbb{P}(B) = \mathbb{P}(A \cap B)$ always $\boxed{\hspace{0.1cm}}\sqrt{\hspace{0.1cm}}$ sometimes $\boxed{\hspace{0.1cm}}$ never $\boxed{\hspace{0.1cm}}$

Name:_____

NetID:_____ Lecture: B

Discussion: Friday 11 12 1 2 3 4

Graph G is at right.

V is the set of nodes.

E is the set of edges.

ab (or ba) is the edge between a and b.

Let $f: V \to \mathbb{P}(E)$ be defined by $f(n) = \{e \in E \mid n \text{ is an endpoint of } e\}$. And let $T = \{f(n) \mid n \in V\}$. (6 points) Fill in the following values:

|V| =Solution: 8

f(d) =Solution: $\{cd, ad, dg\}$

f(h) =Solution: $\{hj\}$

(7 points) Is T a partition of E? For each of the conditions required to be a partition, briefly explain why T does or doesn't satisfy that condition.

Solution: No, T is not a partition of E. T contains all edges in E. However, f(k) is the empty set, so T contains the empty set. Also, there is partial overlap between the subsets, e.g. f(d) and f(a) are different but share the edge ad.

(2 points) State the definition of $\binom{n}{k}$, i.e. express $\binom{n}{k}$ in terms of more basic arithmetic operations.

Solution: $\binom{n}{k} = \frac{n!}{k!(n-k)!}$