Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Prove the following claim, using direct proof and your best mathematical style.

For any integers m and k, if $k \le 7$ and $0 < m - 3 \le \frac{k}{7}$, then $m^2 - 9 \le k$.

Solution: Let m and k be integers and suppose that $k \leq 7$ and $0 < m - 3 \leq \frac{k}{7}$.

Since $0 < m - 3 \le \frac{k}{7}$, $0 < \frac{k}{7}$, so k must be positive.

Since $k \le 7$ and $0 < m - 3 \le \frac{k}{7}$, $0 < m - 3 \le \frac{7}{7} = 1$.

We can deduce two things from $0 < m - 3 \le 1$. First, since k is positive, $k(m - 3) \le k$. Second, by adding 6 to both sides, we get $m+3 \le 7$. Since m-3 is positive, this implies that $(m+3)(m-3) \le 7(m-3)$.

Combining this with $k(m-3) \le k$, we get $(m+3)(m-3) \le 7(m-3) \le k$.

But $k^2 - 9 = (m+3)(m-3)$. So $k^2 - 9 \le k$, which is what we needed to show.

Name:												
NetID:				$L\epsilon$	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) Prove the following claim, using your best mathematical style and the following definition $a \equiv b \pmod{k}$ if and only if a - b = nk for some integer n. of congruence mod k:

Claim: For all integers a, b, c, d, j and k (j and k positive), if $a \equiv b \pmod{k}$ and $c \equiv d$ \pmod{k} and $j \mid k$, then $a + c \equiv b + d \pmod{j}$.

Solution:

Let a, b, c, d, j and k be integers, with j and k positive. Suppose that $a \equiv b \pmod{k}$ and $c \equiv d$ \pmod{k} and $j \mid k$.

By the definition of congruence mod k, $a \equiv b \pmod{k}$ implies that a - b = nk for some integer n. Similarly $c \equiv d \pmod{k}$ implies that c - d = mk for some integer m. By the definition of divides, $j \mid k$ implies that k = pj for some integer p.

We can then calculate

$$(a+c) - (b+d) = (a-b) + (c-d) = nk + mk = (n+m)k = (n+m)pj$$

Notice that (n+m)p is an integer, since n, m, and p are integers. So, by the definition of congruence $\text{mod } k, a + c \equiv b + d \pmod{j}$.

Name:												
NetID:					ectur	\mathbf{A}	\mathbf{B}					
Discussion	Thursday	Friday	Q	10	11	12	1	2	3	1	5	6

(15 points) Use proof by contrapositive to prove the following claim, using your best mathematical style and working directly from the definition of "divides." $(p \nmid q)$ is the negation of $p \mid q$.)

For all integers k, a, b, if $k \not\mid ab$, then $k \not\mid a$ and $k \not\mid b$.

You must begin by explicitly stating the contrapositive of the claim.

Solution: Let's prove the contrapositive. That is, for all integers k, a, b, if $k \mid a$ or $k \mid b$, then $k \mid ab$. So k, a, and b be integers and suppose that $k \mid a$ or $k \mid b$. There are two cases:

Case 1: $k \mid a$. Then a = kp where p is an integer. Then ab = kpb. Let s = pb. Then ab = ks. s is an integer because p and b are integers. So $k \mid ab$.

Case 2: $k \mid b$. Then b = kq where q is an integer. Then ab = akq. Let t = aq. Then ab = kt. t is an integer because q and a are integers. So this means that $k \mid ab$.

In both cases $k \mid ab$, which is what we needed to prove.

CS 173, Spring 18

Examlet 2, Part A

4

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Recall that a real number p is rational if there are integers m and n (n non-zero) such that $p = \frac{m}{n}$. Use this definition and your best mathematical style to prove the following claim:

For all real numbers p and q $(p \neq -1)$, if $\frac{2}{p+1}$ and p+q are rational, then q is rational.

Solution: Let p and q be real numbers, where $p \neq -1$. Suppose that $\frac{2}{p+1}$ and p+q are rational.

By the definition of rational, this means that $\frac{2}{p+1} = \frac{m}{n}$ and $p+q = \frac{a}{b}$, where m, n, a, and b are integers with n and b non-zero. Notice that $\frac{2}{p+1}$ is non-zero, and therefore m is non-zero.

Since $\frac{2}{p+1} = \frac{m}{n}$, 2n = m(p+1), so $p+1 = \frac{2n}{m}$. This means that $p = \frac{2n}{m} - 1 = \frac{2n-m}{m}$.

Since $p + q = \frac{a}{b}$, $q = \frac{a}{b} - p = \frac{a}{b} - \frac{2n - m}{m} = \frac{am - b(2n - m)}{bm}$.

Since a, b, n, and m are integers, am - b(2n - m) and bm are both integers. Moreover, bm must be non-zero because m and b are both non-zero. So q is the ratio of two integers, with the denominator non-zero. Therefore q is rational.

Name:												
NetID:				$L\epsilon$	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) A natural number n is "snarky" if and only if n = 3m + 1, where m is a natural number. Use this definition and your best mathematical style to prove the following claim:

For all natural numbers x and y, if x and y are snarky, then $(x+y)^2$ is snarky.

Solution: Let x and y be natural numbers, and suppose that x and y are both snarky. By the definition of "snarky," this means that x = 3m + 1 and y = 3p + 1, where m and p are natural numbers.

By substitution, we then have $(x + y)^2 = (3m + 1 + 3p + 1)^2 = (3m + 3p + 2)^2$.

Let
$$t = m + p$$
. Then $(x + y)^2 = (3t + 2)^2 = 9t^2 + 12t + 4 = 3(3t^2 + 4t + 1) + 1$.

Now let
$$z = 3t^2 + 4t + 1$$
. Then $(x + y)^2 = 3z + 1$.

Notice that t is a natural number because m and p are natural numbers. And therefore z must also be a natural number. So $(x+y)^2 = 3z + 1$ means that $(x+y)^2$ is snarky, which is what we needed to prove.

Name:_ NetID: Lecture: \mathbf{A} \mathbf{B} Thursday 3 Friday $\mathbf{2}$ 6 Discussion: 9 10 11 121 5 4

(15 points) A pair of positive integers (a, b) is defined to be a partition of a positive integer n if and only if ab = n. Using this definition and your best mathematical style, prove the following claim:

For all positive integers a, b, and n, if (a,b) is a partition of n and $1 < a < \sqrt{n}$, then $\sqrt{n} < b < n$.

Solution: Let a, b, and n be positive integers. Suppose that (a, b) is a partition of n and $1 < a < \sqrt{n}$. By the definition of partition, since (a, b) is a partition of n, we know that ab = n.

We know that 1 < a. b was given to be positive. So b < ab. But ab = n. So b < n.

We know that $a < \sqrt{n}$. So $ab < b\sqrt{n}$. Since ab = n, this means that $n < b\sqrt{n}$. Dividing both sides by \sqrt{n} gives us $\sqrt{n} < b$.

Since b < n and $\sqrt{n} < b$, $\sqrt{n} < b < n$, which is what we needed to prove.