Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Prove the following claim, using direct proof and your best mathematical style.

For any integers m and k, if $k \le 7$ and $0 < m - 3 \le \frac{k}{7}$, then $m^2 - 9 \le k$.

Name:												
NetID:					ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) Prove the following claim, using your best mathematical style and the following definition of congruence mod k: $a \equiv b \pmod{k}$ if and only if a - b = nk for some integer n.

Claim: For all integers a, b, c, d, j and k (j and k positive), if $a \equiv b \pmod{k}$ and $c \equiv d \pmod{k}$ and $j \mid k$, then $a + c \equiv b + d \pmod{j}$.

Name:												
NetID:	D:			$L\epsilon$	ecture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	Q	10	11	19	1	2	2	1	5	6

(15 points) Use proof by contrapositive to prove the following claim, using your best mathematical style and working directly from the definition of "divides." $(p \nmid q)$ is the negation of $p \mid q$.)

For all integers k, a, b, if $k \not\mid ab$, then $k \not\mid a$ and $k \not\mid b$.

You must begin by explicitly stating the contrapositive of the claim.

Thursday

Discussion:

12

1

 $\mathbf{2}$

3

4

5

6

Name:_______ Lecture: A B

9

Friday

(15 points) Recall that a real number p is rational if there are integers m and n (n non-zero) such that $p = \frac{m}{n}$. Use this definition and your best mathematical style to prove the following claim:

10

11

For all real numbers p and q $(p \neq -1)$, if $\frac{2}{p+1}$ and p+q are rational, then q is rational.

Name:												
NetID:				$L\epsilon$	ecture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(15 points) A natural number n is "snarky" if and only if n = 3m + 1, where m is a natural number. Use this definition and your best mathematical style to prove the following claim:

For all natural numbers x and y, if x and y are snarky, then $(x+y)^2$ is snarky.

Name:												
NetID:	D:			$L\epsilon$	ecture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	Q	10	11	19	1	2	2	1	5	6

(15 points) A pair of positive integers (a, b) is defined to be a partition of a positive integer n if and only if ab = n. Using this definition and your best mathematical style, prove the following claim:

For all positive integers a, b, and n, if (a,b) is a partition of n and $1 < a < \sqrt{n}$, then $\sqrt{n} < b < n$.