Name:												
NetID:		_	$L\epsilon$	ectur	e:	\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
` - /	Let a and b be in mainder r of a divi					_	_				_	_
Solution:	$0 \le r < b$											
2. (6 points)	Use the Euclidean	n algorithm	to co	mpute	$\gcd(22$	262, 54	6). Sł	now yo	our v	vork.		
Solution:												
2262 - 546	$6 \times 4 = 2262 - 218$	34 = 78										
$546-7 \times 10^{-2}$	78 = 0											
So the GC	D is 78.											
3. (4 points)	Check the (single)	box that b	est ch	naracte:	rizes ea	ach ite	m.					
7 0	true	/ false]								
$7 \equiv -7 \text{ (m)}$	nod k)	o levere			atim	Г	/	70.07				

always

sometimes

never

Name:												
NetID:			_	$L\epsilon$	ecture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	Q	10	11	19	1	2	2	1	5	6

Claim: For all positive integers a, b, and c, if gcd(a,bc) > 1, then gcd(a,b) > 1 or gcd(a,c) > 1.

Solution: This is true. If gcd(a, bc) > 1, then there is some prime p > 1 that divides both a and bc. Since p is prime, p must divide a or b. So gcd(a, b) > 1 or gcd(a, c) > 1.

2. (6 points) Use the Euclidean algorithm to compute gcd(2079, 759). Show your work.

Solution:

$$2079 - 759 \times 2 = 2079 - 1518 = 561$$

 $759 - 561 = 198$
 $561 - 198 \times 2 = 561 - 396 = 165$
 $198 - 165 = 33$
 $165 - 33 \times 5 = 0$
So the GCD is 33.

3. (4 points) Check the (single) box that best characterizes each item.

$-2 \equiv 2 \pmod{9}$	true	false $\sqrt{}$	
------------------------	------	-----------------	--

If a and b are positive and r = remainder(a, b), then gcd(b, r) = gcd(b, a) false

Name:													
NetID:			_	Lecture:			\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6	
1. (5 points)	Is the following	claim true?	Infor	mally	explain	n why	it is,	or giv	ve a	concr	ete c	ounte	r-

example showing that it is not.

Claim: For all natural numbers a and b, if $a \mid b$ and $b \mid a$, then a = b.

Solution: This is true. If $a \mid b$ and $b \mid a$, then b = pa and a = qb, where p and q are integers. Since a and b are natural numbers and therefore not negative, p and q cannot be negative. So b = pqb, so pq = 1. So p = q = 1 and therefore a = b. [This is more detail than you'd need for full credit.]

2. (6 points) Use the Euclidean algorithm to compute gcd(2385, 636). Show your work.

Solution:

$$2385 - 3 \times 636 = 2385 - 1908 = 477$$

$$636 - 477 = 159$$

$$477 - 3 \times 159 = 0$$

So the GCD is 159.

3. (4 points) Check the (single) box that best characterizes each item.

$$-7 \equiv 13 \pmod{5}$$
 true $\sqrt{}$ false

For any integers p and q, if $p \mid q$ then $p \leq q$. true false $\sqrt{}$

Name:												
NetID:			-	Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

For any positive integers s, t, p, q, if $s \equiv t \pmod{p}$ and $p \mid q$, then $s \equiv t \pmod{q}$.

Solution: This is false.

Informally, since q is larger than p, congruence mod q makes finer distinctions among numbers than p does.

More formally, consider $s=1,\,t=4,\,p=3$ and q=6. Then $3\mid 6$ and s and t are congruent mod 3, but but s and t aren't congruent mod 6.

2. (6 points) Use the Euclidean algorithm to compute gcd(221, 1224). Show your work.

Solution:

$$1224 - 5 \times 221 = 1224 - 1105 = 119$$

$$221 - 119 = 102$$

$$119 - 102 = 17$$

$$102 - 17 \times 6 = 0$$

So the GCD is 17.

3. (4 points) Check the (single) box that best characterizes each item.

$$-7 \mid 0$$
 true $\sqrt{}$ false

$$k \equiv -k \pmod{7}$$
 always sometimes $\sqrt{}$ never

Name:												
NetID:			-	Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

For any positive integers a, b, and c, if $a \mid c$ and $b \mid c$, then $ab \mid c$

Solution: This is not true. Consider a=b=c=5. Then $a\mid c$ and $b\mid c$. But ab=25 and c=5. So ab does not divide c.

2. (6 points) Use the Euclidean algorithm to compute gcd(7839, 1474). Show your work.

Solution:

$$7839 - 5 \times 1474 = 7839 - 7370 = 469$$

 $1474 - 3 \times 469 = 1474 - 1407 = 67$
 $469 - 7 \times 67 = 0$
So the GCD is 67.

3. (4 points) Check the (single) box that best characterizes each item.

$$-11 \equiv 4 \pmod{7}$$
 true false $\sqrt{}$ false false $\sqrt{}$ for any positive integers $p, q, \text{ and } k$, if $p \equiv q \pmod{k}$, then $p^2 \equiv q^2 \pmod{k}$ false false $\sqrt{}$

Name:												
NetID:			_	Le	cture	e:	A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

For any positive integers s, t, p, q, if $s \equiv t \pmod{p}$ and $q \mid p$, then $s \equiv t \pmod{q}$.

Solution: This is true.

Informally, since q is smaller, congruence mod q makes coarser distinctions than congruence mod q. So this is in the right direction and the relationship $q \mid p$ ensures that the details work out.

More formally, from $s \equiv t \pmod{p}$ and $q \mid p$, we get that s = t + pk and p = qj, where k and j are integers. So s = t + q(jk), which means that $s \equiv t \pmod{q}$.

2. (6 points) Use the Euclidean algorithm to compute gcd(4340, 1155). Show your work.

Solution:

$$4340 - 1155 \times 3 = 4340 - 3465 = 875$$

 $1155 - 875 = 280$
 $875 - 280 \times 3 = 875 - 840 = 35$
 $280 - 35 \times 24 = 0$

So the GCD is 35.

3. (4 points) Check the (single) box that best characterizes each item.

$-7 \equiv 13 \pmod{5}$	true	$\sqrt{}$	false		
-------------------------	------	-----------	-------	--	--

 $\gcd(k,0)$ for k positive 0 k $\sqrt{}$ undefined