Name:____ NetID: Lecture: \mathbf{B} \mathbf{A} Discussion: Thursday Friday 9 11 **12** 1 $\mathbf{2}$ 3 10 4 5 6

1. (5 points) Let a and b be integers, b > 0. The formula a = bq + r partially defines the quotient q and the remainder r of a divided by b. What other constraint must we add to completely determine q and r?

2. (6 points) Use the Euclidean algorithm to compute gcd(2262, 546). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

7 | 0 true false

 $7 \equiv -7 \pmod{k}$ always sometimes never

Name:_

NetID:

Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday 9

Friday

10

12

11

 $\mathbf{2}$ 1

3

5

6

4

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counterexample showing that it is not.

Claim: For all positive integers a, b, and c, if gcd(a,bc) > 1, then gcd(a,b) > 1 or $\gcd(a,c) > 1.$

2. (6 points) Use the Euclidean algorithm to compute gcd(2079, 759). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

 $-2 \equiv 2 \pmod{9}$

then gcd(b, r) = gcd(b, a)

true

false

If a and b are positive and r = remainder(a, b), true

false

CS 173, Spring 18 Examlet 2						rt E	3				;	3	
Name:													
NetID:			_	Lecture:			\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6	
	Is the following owing that it is n		Info	rmally	explair	n why	it is,	or giv	ve a	conci	ete c	counter	_
Claim	: For all natural 1	numbers a as	nd b,	if $a \mid b$	and b	a, th	en $a =$	=b.					
2 (6 : t)	II 4b. Elidaa	l: <u>+ l</u>	4		1/99	00° 69	e) Cl			1-			
2. (6 points)	Use the Euclidean	n aigorithin	to co	mpute	gca(25	989, 0 <u>9</u>	o). Si	10W Y	our v	vork.			

$$-7 \equiv 13 \pmod{5}$$
 true false

For any integers
$$p$$
 and q , if $p \mid q$ then $p \leq q$. true false

Name:____

NetID:______ Lect

Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

For any positive integers s, t, p, q, if $s \equiv t \pmod{p}$ and $p \mid q$, then $s \equiv t \pmod{q}$.

2. (6 points) Use the Euclidean algorithm to compute gcd(221, 1224). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

-7 | 0

true

false

 $k \equiv -k \pmod{7}$

always

sometimes

neve

Thursday

Discussion:

12

1

 $\mathbf{2}$

false

3

4

5

6

9

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

10

11

For any positive integers a, b, and c, if $a \mid c$ and $b \mid c$, then $ab \mid c$

Friday

2. (6 points) Use the Euclidean algorithm to compute gcd(7839, 1474). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

 $-11 \equiv 4 \pmod{7}$ true false

For any positive integers p, q, and k, if $p \equiv q \pmod{k}$, then $p^2 \equiv q^2 \pmod{k}$

Name:												
NetID:				Le	ectur	\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (5 points) Is the following claim true? Informally explain why it is, or give a concrete counter-example showing that it is not.

For any positive integers s, t, p, q, if $s \equiv t \pmod{p}$ and $q \mid p$, then $s \equiv t \pmod{q}$.

2. (6 points) Use the Euclidean algorithm to compute gcd(4340, 1155). Show your work.

3. (4 points) Check the (single) box that best characterizes each item.

 $-7 \equiv 13 \pmod{5}$ true false

gcd(k,0) for k positive 0 k undefined