NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

For any integers s and t define L(s,t) as follows:

$$L(s,t) = \{ sx + ty \mid x, y \in \mathbb{Z} \}$$

Thus, L(s,t) consists of all integers that can be expressed as the sum of multiples of s and t. Prove the following claim using your best mathematical style and the following definition of congruence mod k: $p \equiv q \pmod{k}$ if and only if p = q + kn for some integer n.

Claim: For any integers a, b, r, where r is positive, if $a \equiv b \pmod{r}$, then $L(a,b) \subseteq L(r,b)$.

Solution: Let a, b and r be integers, where r is positive. And suppose that $a \equiv b \pmod{r}$. Then a = b + rn for some integer n.

Let q be an element of L(a, b). Then q = ax + by, where x and y are integers.

Substituting a = b + rn into q = ax + by, we get q = x(b + rn) + by. So q = (xn)r + (x + y)b.

xn and x+y are integers, because x, y, and n are integers. So q=(xn)r+(x+y)b implies that $q\in L(r,b)$.

Since q was an arbitrarily chosen element of L(a,b), we've shown that $L(a,b) \subseteq L(r,b)$.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

$$A = \{(p,q) \in \mathbb{R}^2 \mid p = 0\}$$

$$B = \{(x, y) \in \mathbb{R}^2 \mid (x - 1)^2 + y^2 = 4\}$$

$$C = \{(s,t) \in \mathbb{R}^2 \ | \ (s+1)^2 + t^2 = 4\}$$

Prove that $B \cap C \subseteq A$.

Solution: Let $(x,y) \in \mathbb{R}$ and suppose that $(x,y) \in B \cap C$. Then $(x,y) \in B$ and $(x,y) \in C$.

By the definitions of B and C, this means that $(x-1)^2 + y^2 = 4$ and $(x+1)^2 + y^2 = 4$. So $(x-1)^2 + y^2 = (x+1)^2 + y^2$, which means that $(x-1)^2 = (x+1)^2$. Multiplying out the two sides, we get $x^2 - 2x + 2 = x^2 + 2x + 2$ So -2x = 2x, so 4x = 0, so x = 0.

Since x = 0, $(x, y) \in A$, which is what we needed to show.

[This shows more algebra steps than I'd expect for full credit.]

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

 $A = \{(x, y, z) \in \mathbb{Z}^3 : 2x + y = z - 1\}$

 $B = \{(a, b, c) \in \mathbb{Z}^3 : 2a - b = c - 3\}$

 $C = \{(p,q,r) \in \mathbb{Z}^3 \ : \ r \text{ is even}\}$

Prove that $A \cap B \subseteq C$. (Work directly from the definition of "even.")

Solution: Let $(x, y, z) \in A \cap B$. Then $(x, y, z) \in A$. So x, y, and z are integers and 2x + y = z - 1. Also $(x, y, z) \in B$. So 2x - y = z - 3.

Adding together 2x + y = z - 1 and 2x - y = z - 3, we get 4x = 2z - 4. So 2x = z - 2. So z = 2(x + 1). Since x is an integer, x + 1 is an integer. So z = 2(x + 1) implies that z is even, which is what we needed to prove.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

 $A = \{(a, b) \in \mathbb{R}^2 : a = 3 - b^2\}$

 $B = \{(x, y) \in \mathbb{R}^2 : |x| \ge 1 \text{ or } |y| \ge 1\}$

Prove that $A \subseteq B$. Hint: you may find proof by cases helpful.

Solution: Suppose that (a,b) is an element of A. Then, by the definition of A, $(a,b) \in \mathbb{R}^2$ and $a=3-b^2$.

Consider two cases, based on the magnitude of b:

Case 1: $|b| \ge 1$. Then (a, b) is an element of B. (Because it satisfies one of the two conditions in the OR.)

Case 2: |b| < 1. Then $b^2 < 1$. Then $a = 3 - b^2 > 3 - 1 = 2$. So $|a| \ge 1$, which means that (a, b) is an element of B.

So (a, b) is an element of B in both cases, which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

$$A = \{\lambda(3,2) + (1-\lambda)(5,0) \mid \lambda \in [0,1]\}$$

$$B = \{(x, y) \in \mathbb{R}^2 \mid x \ge y\}$$

Prove that $A \subseteq B$.

Solution:

Let $(x, y) \in A$. Then $(x, y) = \lambda(3, 2) + (1 - \lambda)(5, 0)$ for some $\lambda \in [0, 1]$. So $x = 3\lambda + 5(1 - \lambda) = 5 - 2\lambda$ and $y = 2\lambda$.

Since $\lambda \in [0.1]$, $\lambda \le 1$. So $4\lambda \le 5\lambda \le 5$. So $5-4\lambda \ge 0$. And therefore $x=5-2\lambda \ge 2\lambda = y$.

Since $x \geq y$, $(x, y) \in B$, which is what we needed to show.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

 $A = \{(x, y, z) \in \mathbb{Z}^3 : 0 < x \le y \le z\}$

 $B = \{(a, b, c) \in \mathbb{R}^3 : c^2 \le a\}$

 $C = \{(p,q,r) \in \mathbb{R}^3 : p \ge 1\}$

Prove that $A \cap B \subseteq C$.

Solution: Let $(x, y, z) \in A \cap B$. Then $(x, y, z) \in A$, so x, y, and z are integers and $0 < x \le y \le z$. Also $(x, y, z) \in B$, so $z^2 \le x$.

From the first equation, we know that z is positive. Since $x \le y \le z$, we know that $x \le z$. Combining this with $z^2 \le x$, we have $z^2 \le z$. Since z is positive, this implies that $z \le 1$.

Notice that we now have $0 < x \le z \le 1$. So $0 < x \le 1$. Since x is an integer, this means that x = 1. So $(x, y, z) \in C$, which is what we needed to show.