CS 173, Spring 18

Examlet 3, Part A

1

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

For any integers s and t define L(s,t) as follows:

$$L(s,t) = \{ sx + ty \mid x, y \in \mathbb{Z} \}$$

Thus, L(s,t) consists of all integers that can be expressed as the sum of multiples of s and t. Prove the following claim using your best mathematical style and the following definition of congruence mod k: $p \equiv q \pmod{k}$ if and only if p = q + kn for some integer n.

Claim: For any integers a, b, r, where r is positive, if $a \equiv b \pmod{r}$, then $L(a, b) \subseteq L(r, b)$.

NetID:_____ Lecture:

 \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 10 11 $12 \quad 1$ 2 3 4 5 6

$$A = \{(p,q) \in \mathbb{R}^2 \mid p = 0\}$$

$$B = \{(x,y) \in \mathbb{R}^2 \mid (x-1)^2 + y^2 = 4\}$$

$$C = \{(s,t) \in \mathbb{R}^2 \mid (s+1)^2 + t^2 = 4\}$$

Prove that $B \cap C \subseteq A$.

NetID:____ Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday 9 **10** 11 **12** 1 $\mathbf{2}$ 3 4 5 6

 $A = \{(x, y, z) \in \mathbb{Z}^3 : 2x + y = z - 1\}$

 $B = \{(a, b, c) \in \mathbb{Z}^3 : 2a - b = c - 3\}$

 $C = \{(p,q,r) \in \mathbb{Z}^3 \ : \ r \text{ is even}\}$

Prove that $A \cap B \subseteq C$. (Work directly from the definition of "even.")

NetID:_____ Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 10 11 **12** 1 2 3 6 4 5

 $A = \{(a, b) \in \mathbb{R}^2 : a = 3 - b^2\}$

 $B = \{(x, y) \in \mathbb{R}^2 : |x| \ge 1 \text{ or } |y| \ge 1\}$

Prove that $A \subseteq B$. Hint: you may find proof by cases helpful.

NetID:_____ Lecture: \mathbf{B} \mathbf{A}

11 Discussion: Thursday Friday 9 10 121 2 3 4 5 6

$$A = \{\lambda(3,2) + (1-\lambda)(5,0) \mid \lambda \in [0,1]\}$$

$$B = \{(x, y) \in \mathbb{R}^2 \mid x \ge y\}$$

Prove that $A \subseteq B$.

NetID:_____ Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 **10** 11 121 2 3 4 5 6

 $A = \{(x,y,z) \in \mathbb{Z}^3 \ : \ 0 < x \leq y \leq z\}$

 $B = \{(a, b, c) \in \mathbb{R}^3 : c^2 \le a\}$

 $C = \{(p,q,r) \in \mathbb{R}^3 : p \ge 1\}$

Prove that $A \cap B \subseteq C$.