Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{fox}, \text{cat}\}$ $B = \{\text{rat}, \text{mouse}\}$ $A \cap B =$

 $\{p^2+q\ |\ p\in\mathbb{Z},\ q\in\mathbb{Z},\ 1\leq p\leq 2\ \mathrm{and}\ 1\leq q\leq 3\}=$

2. (4 points) Check the (single) box that best characterizes each item.

For all integers n, if $n^2 = 101$, then n > 11.

true

false

undefined

If $x \in A \cup B$, then $x \in A$. true for all sets A and B

false for all sets A and B

true for some sets A and B

3. (7 points) In \mathbb{Z}_{11} , find the value of $[6]^6 + [5]^3$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

Discussion:

 $\mathbf{2}$

1

3

4

5

6

 Name:______

 NetID:______
 Lecture: A B

9

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

10

11

12

For any sets A, B, and C, if $A \subseteq B$ then $A \times C \subseteq B \times C$.

Friday

Thursday

2. (4 points) Check the (single) box that best characterizes each item.

\emptyset is an element	nent of Z bot	h a subset of	\mathbb{Z} neither
Sets A and B are disjoint A and A are	$A \cap B = \{\emptyset\} $ $ A \cap B = 1$	$A \cap B = \emptyset$ $A = \overline{B}$	

3. (7 points) In \mathbb{Z}_{11} , find the value of $[8]^{22}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

Name:												
NetID:			_	$L\epsilon$	ectur	e:	\mathbf{A}	\mathbf{B}				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1. (4 points)	Is this claim true	? Give a con	acrete	e count	er-exai	nple o	r brie	fly ex	plain	why	it's t	rue
For an	y sets $A, B,$ and	$C, A \cup (B -$	-C)	$\subseteq (A \cup$	B)-c	C						

2. (4 points) Check the (single) box that best characterizes each item.

$A \times B = A$	true for all sets A and B true for some sets A and B	false for all sets A and B	
$\emptyset \times \emptyset =$	Ø [[]	$\{\emptyset,\emptyset\}$ $\Big[$ $\Big[$ $\Big[$ $\Big[$ $\Big[$ $\Big[$ $\Big[$ $\Big[$	

3. (7 points) In \mathbb{Z}_{13} , find the value of $[6]^8 + [5]^{20}$. You must show your work, keeping all numbers in your calculations small. **You may not use a calculator.** You must express your final answer as [n], where $0 \le n \le 12$.

Name:												
NetID:			_	Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (4 points) Is this claim true? Give a concrete counter-example or briefly explain why it's true.

For any sets A, B, and C, if $A \subseteq B$ then $A \cap C \subseteq B \cap C$.

2. (4 points) Check the (single) box that best characterizes each item.

$A = \overline{A}$ (Assume the universe is not empty.)	true for all false for all		true for so	ome sets A	
$\forall x \in \mathbb{Q}, \text{ if } x^2 = 3, \text{ then } x > 3$	> 1000.	true	false	undefined	

3. (7 points) In \mathbb{Z}_{11} , find the value of $[7]^{40}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

Name:_____

NetID:______ Lecture:

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{oak}, \text{apple}, \text{maple}, \text{elm}\}$ $B = \{\text{tree}, \text{oak}, \emptyset\}$ $A \cap B =$

 $\{(p,q) : p \in \mathbb{Z}^+, q \in \mathbb{Z}^+, \text{ and } pq = 6\} =$

2. (4 points) Check the (single) box that best characterizes each item.

 $\emptyset \in A$

true for all sets A

true for some sets A

 \mathbf{A}

 \mathbf{B}

false for all sets A

 $|A \cup B| = |A| + |B|$

true for all sets A and B false for all sets A and B

true for some sets A and B

3. (7 points) In \mathbb{Z}_{11} , find the value of $[8]^{37}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.

Name:____

NetID:_____

Lecture: A

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (4 points) $A = \{\text{fox, tiger, wolf}\}$ $B = \{3,4\}$ $C = \{6,7,8\}$ $\mid A \times (B \cup C) \mid =$

 $\{p+q\ \mid\ p\in\mathbb{Z},\ q\in\mathbb{Z},\ 1\leq p\leq 3\ \mathrm{and}\ 1\leq q\leq 3\}=$

2. (4 points) Check the (single) box that best characterizes each item.

 $\{1,2\} \cup \emptyset =$

 $\emptyset \\ \{(1,\emptyset),(2,\emptyset)\}$

 $\{\emptyset\}$ $\{1,2,\emptyset\}$

 $\{1, 2\}$

 \mathbf{B}

undefined

 $A \cup B = A$

true for all sets A and B true for some sets A and B

false for all sets A and B

3. (7 points) In \mathbb{Z}_{11} , find the value of $[10]^{43} + [7]^{10}$. You must show your work, keeping all numbers in your calculations small. You may not use a calculator. You must express your final answer as [n], where $0 \le n \le 10$.