Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Let $A = \mathbb{Z}^+ \times \mathbb{Z}^+$, i.e. pairs of positive integers. Consider the relation T on A defined by

(x,y)T(p,q) if and only if (xy)(p+q)<(pq)(x+y)

Prove that T is transitive.

Name:												
NetID:				Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

Suppose that n is some integer ≥ 2 . Let's define the relation R_n on the integers such that aR_nb if and only if $a \equiv b+1 \pmod{n}$. Prove the following claim

Claim: If R_n is symmetric, then n=2.

You must work directly from the definition of congruence mod k, using the following version of the definition: $x \equiv y \pmod{k}$ iff x - y = mk for some integer m. You may use the following fact about divisibility: for any non-zero integers p and q, if $p \mid q$, then $|p| \leq |q|$.

 \mathbf{B}

Lecture: \mathbf{A}

Discussion: Thursday Friday 2 3 6 9 10 11 **12** 1 4 5

Let $A = \{(x, y) \in \mathbb{R}^2 \mid x + y = 10\}$. Consider the relation T on A defined by

(a,b)T(p,q) if and only if $aq \ge bp$

Prove that T is antisymmetric.

 \mathbf{B}

 \mathbf{A}

Name:_____

NetID: Lecture:

Discussion: Thursday Friday 9 10 11 **12** 1 $\mathbf{2}$ 3 4 **5** 6

Let T be the relation defined on \mathbb{N}^2 by

(x,y)T(p,q) if and only if x < p or $(x = p \text{ and } y \le q)$

Prove that T is transitive.

Name:_____

NetID:_ Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 **12** 1 $\mathbf{2}$ 3 6 10 11 4 5

Let's define a relation T between natural numbers follows:

aTb if and only if a = b + 2k, where k is a natural number

Working directly from this definition, prove that T is antisymmetric.

Name:												
NetID:				$L\epsilon$	ecture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

Suppose that T is a relation on the integers which is antisymmetric. Let's define a relation R on pairs of integers such that (p,q)R(a,b) if and only if (a+b)T(p+q) and bTq. Prove that R is antisymmetric.