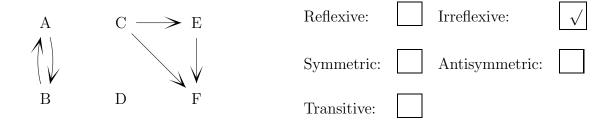
Name:				
NetID:	Lecture:	\mathbf{A}	В	

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Recall that \mathbb{N}^2 is the set of all pairs of natural numbers. Let's define the equivalence relation \sim on \mathbb{N}^2 as follows: $(x,y) \sim (p,q)$ if and only |x-y| = |p-q|. List three members of [(2,3)].

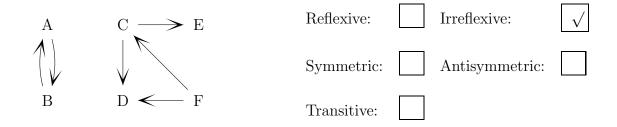
Solution: (2,3), (3,4), (14,13)

3. (5 points) Suppose that R is a relation on the integers such xRy if and only if x = y. Is R an equivalence relation?

Solution: Yes, R is an equivalence relation. It's reflexive because elements are always related to themselves. Since there aren't any relations between distinct elements, it's also symmetric and transitive.

Name:												
NetID:			-	$L\epsilon$	ecture	e :	\mathbf{A}	В				
Digguagion	Thursday	Friday	Ω	10	11	19	1	2	2	1	5	G

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Can a relation be symetric and also antisymmetric? Either give such a relation or briefly explain why it's not possible to construct one.

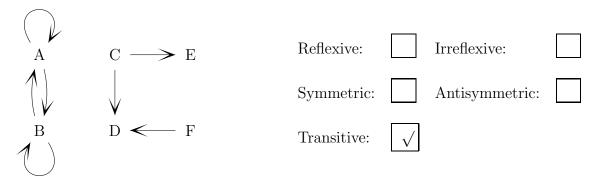
Solution: Yes, this is possible. Consider the relation R on the integers such that aRb if and only if a = b. This is both symmetric and antisymmetric.

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "disjoint" relation D on J by (a,b)D(c,d) if and only if $b \le c$ or $d \le a$. Is D transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: D is not transitive. Consider (1,2), (3,5), and (4,6). Then (4,6)D(1,2). (1,2)D(3,5) and But not (4,6)D(3,5).

Name:												
NetID:				$L\epsilon$	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Suppose that R is a partial order on a set A. What additional property is required for R to be a linear order (aka total order)? Give specific details of the property, not just its name.

Solution: All pairs of elements must be comparable. That is, for any elements x and y in A, either xRy or yRx.

3. (5 points) Suppose that R is a relation on the integers such xRy if and only if $2 \mid (x+y+1)$. Is R transitive?

Solution: No, R is not transitive. For example, 2R3 and 3R4 but it's not the case that 2R4.

Name:													
NetID:				$\mathbf{L}_{\mathbf{c}}$	ectui	re:	\mathbf{A}	\mathbf{B}					
Discussion:	Thursday	Frid	ay s	9 10	11	12	1	2	3	4	5	6	
1. (5 points)	Check all boxes	that con	rrectly	character	rize th	is relati	on on	the se	et {/	A, B, α	C, D,	E, F	}.
A	C	Е				Reflex	ive:		Ir	reflex	ive:		
В	D		`	s, 6 nodes arrows	S	Symm	etric:		A	ntisyr	nmet	ric:	
			,			Transi	tive:						

2. (5 points) Let R be the equivalence relation on the real numbers such that xRy if and only if $\lfloor x \rfloor = \lfloor y \rfloor$. Give three members of the equivalence class [13].

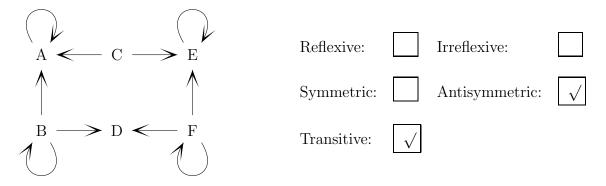
Solution: 13, 13.1, 13.7

3. (5 points) Suppose that R is a relation on pairs of integers such that (x,y)R(a,b) if and only if $x-a \ge 2$ and $y \ge b$. Is R a partial order?

Solution: No, R is not a partial order. It's transitive and antisymmetric. However it's impossible for an element (x, y) to be related to itself, because that would require $x - x \ge 2$. So it's not reflexive.

Name:												
NetID:				Le	ectur	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Notice that this problem was corrected early in the exam. This is the corrected version. Let's define the relation \sim on \mathbb{Z} such that $x \sim y$ if and only |x - y| = 3. List all elements related to 7.

Solution: 4 and 10

3. (5 points) Let S be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)S(p,q) if and only if $x^2 + y^2 \le p^2 + q^2$. Is S antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

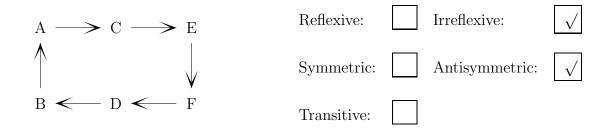
Solution: This relation is not antisymmetric. We have (0,1)S(1,0) and (1,0)S(0,1), but $(0,1) \neq (1,0)$.

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.



2. (5 points) Suppose that R is an equivalence relation on a set A. Using precise set notation, define $[x]_R$, i.e. the equivalence class of x under the relation R.

Solution: $[x]_R = \{y \in A \mid xRy\}$

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "touches" relation T on J by (a,b)T(c,d) if and only if a=d or b=c. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Solution: This relation is not transitive. Consider (1,2), (2,3), and (3,4). Then (1,2)T(2,3) and (2,3)T(3,4), but not (1,2)T(3,4).