Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Recall that \mathbb{N}^2 is the set of all pairs of natural numbers. Let's define the equivalence relation \sim on \mathbb{N}^2 as follows: $(x,y) \sim (p,q)$ if and only |x-y| = |p-q|. List three members of [(2,3)].

3. (5 points) Suppose that R is a relation on the integers such xRy if and only if x = y. Is R an equivalence relation?

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Can a relation be symetric and also antisymmetric? Either give such a relation or briefly explain why it's not possible to construct one.

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "disjoint" relation D on J by (a,b)D(c,d) if and only if $b \le c$ or $d \le a$. Is D transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.

Name:_____ NetID: Lecture: \mathbf{B} \mathbf{A} Discussion: Friday 9 **12** $\mathbf{2}$ 3 Thursday

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

10

11

1

4

5

6

2. (5 points) Suppose that R is a partial order on a set A. What additional property is required for R to be a linear order (aka total order)? Give specific details of the property, not just its name.

3. (5 points) Suppose that R is a relation on the integers such xRy if and only if $2 \mid (x+y+1)$. Is R transitive?

Name:														
NetID:				Lecture: A			\mathbf{A}	В						
Discussion:	Thursday	Frida	ay 9	10	11	12	1	2	3	4	5	6		
1. (5 points)	Check all boxes	that corr	rectly ch	aracter	ize thi	s relation	on on	the s	et {Æ	A, B, ϵ	C, D,	E, F	} .	
A	C	Е				Reflexi	ive:		Irreflexi			ve:		
В	D	8	(that is, (and no anatall)		3	Symme			An	ntisyn	$\mathrm{nmet}_{\mathrm{I}}$	ric:		

2. (5 points) Let R be the equivalence relation on the real numbers such that xRy if and only if $\lfloor x \rfloor = \lfloor y \rfloor$. Give three members of the equivalence class [13].

3. (5 points) Suppose that R is a relation on pairs of integers such that (x,y)R(a,b) if and only if $x-a \ge 2$ and $y \ge b$. Is R a partial order?

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

2. (5 points) Notice that this problem was corrected early in the exam. This is the corrected version. Let's define the relation \sim on \mathbb{Z} such that $x \sim y$ if and only |x - y| = 3. List all elements related to 7.

3. (5 points) Let S be the relation defined on set of pairs $(x,y) \in \mathbb{R}^2$ such that (x,y)S(p,q) if and only if $x^2 + y^2 \le p^2 + q^2$. Is S antisymmetric? Informally explain why it is, or give a concrete counter-example showing that it is not.

Thursday

Discussion:

 Name:______

 NetID:______
 Lecture: A B

9

Friday

1. (5 points) Check all boxes that correctly characterize this relation on the set $\{A, B, C, D, E, F\}$.

10

11

12

1

 $\mathbf{2}$

3

4

5

6

2. (5 points) Suppose that R is an equivalence relation on a set A. Using precise set notation, define $[x]_R$, i.e. the equivalence class of x under the relation R.

3. (5 points) Let J be the set of open intervals of the real line, i.e $J = \{(x,y) \in \mathbb{R}^2 \mid x < y\}$. Let's define the "touches" relation T on J by (a,b)T(c,d) if and only if a=d or b=c. Is T transitive? Informally explain why it is, or give a concrete counter-example showing that it is not.