Name:												
NetID:			_	Lecture			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
\ - /	How many difference is etts''? Show		string	gs can	be mad	le be r	earrai	nging	the l	letters	in th	ne word
Solution: possibilities	There are 13 le	etters total,	with	4 copi	es of s	, two	t's, a	nd 2 a	a's.	So th	e nur	nber of
				$\frac{13!}{4!2!2!}$								
2. (12 points)	Check the (single	e) box that i	best o	charact	erizes e	each it	em.					
	from $\mathbb R$ to $\mathbb R$ is a set to the state of the state o	° tri	ue		false							
$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = 7 -$	$\left\lfloor \frac{x}{3} \right\rfloor$	ento 🗸	n	ot onto)	1	not a	functi	on			
$g: (0, \frac{\pi}{2}) \to g(x) = \sin(x)$		o-one $\sqrt{}$		not on	ie-to-or	ne		not	a fu	nctior	1	
choose from single color.	12 mailboxes. and each mailboxes. By the pigeonhat least two mail	ox is painted ole principle	d with	ı a		true			fals	se v	/	
$\exists y \in \mathbb{N}, \ \forall x$	$\in \mathbb{N}, \ x = xy$	tru	le	$\sqrt{}$	false							
$(f \circ g)(x)$		f(g(x))) (<u>/</u>	g(f(x))))		neith	ner			

Name:												
NetID:	Lecture: A					В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1. (5 points) $A \times B \text{ to } C$	Suppose that $ A $??	= p, B =	q, C	C = n.	How	many	differe	ent fu	nctic	ns ar	e the	re from
Solution: to C .	There are pq elements	ments in $A \times$	<i>B</i> . S	o there	e are (r	$n)^{pq}$ wa	ys to	build	a fui	nction	fron	$A \times B$
2. (12 points)	Check the (single	e) box that b	est c	haracte	erizes	each it	em.					
If a function it must be o	n from \mathbb{R} to \mathbb{R} is one-to-one.	increasing,	true	e		false						
$g: \mathbb{Z} \to \mathbb{R}$ $g(x) = x + $	2.137 one-	to-one $\sqrt{}$		not o	ne-to-	one		no	t a f	unctio	on [
$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = \lfloor x \rfloor$		onto $\sqrt{}$		not o	nto		not	a fur	nctio	n		
	shirt has one of 6 irts. Each slogar			_		true			fals	e v	\checkmark	
$\forall x \in \mathbb{Z}, \ \exists y$	$\in \mathbb{Z}, \ x \neq y \text{ and } .$	x + y = 0		true [fa	lse	$\sqrt{}$				
	$A \to B. \text{ For } f(x) = f(y),$	onto [one	e-to-on	e v	/	neith	ner			

Na	me:												
Ne	tID:			_	Lecture:				\mathbf{B}	В			
Dis	cussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1.	Society. He	10 men and 15 ow many different one man and one	t ways can		-			_				_	
		Since we're goin en to the women. functions is	_										
2.	(12 points)	Check the (single	e) box that l	best o	charact	erizes e	each it	em.					
	If $f: A \to A$	B is onto, then	$ A \ge $	B	$\sqrt{}$	A	$\leq B $.	A =	B		
	$f: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x + f(x) = x - f(x)$		onto $\sqrt{}$		not o	nto		not	a fun	ictio	n		
	$g: \mathbb{N} \to \mathbb{Z}$ $g(x) = x^2$	one-te	o-one $\sqrt{}$		not on	e-to-or	ne _		not	a fu	nction	n	
		shirt has one of 6 irts. At least three ogan.			_		true]	false]	
	$\forall x \in \mathbb{R}, \ \exists n$	$n, n \in \mathbb{Z}, \ x = \frac{m}{n}$	tru	e [false]					
		$: A \to B$. For there is a $y \in B$,	onto		one	e-to-on	e		neith	er [

Name:												
NetID:			-	Lecture:			\mathbf{A}	A B				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
\ - /	How many differes;'? Show your		string	s can b	e mad	e be re	earran	ging	the le	etters	in th	ne word
Solution: possibilities	There are 9 let is	eters total,	with	3 соріє	es of s	, two	l's, ar	nd 2 i	's. S	So the	e nur	nber of
				9! 3!2!2!								
2. (12 points)	Check the (single	e) box that h	oest o	charact	erizes e	each it	em.					
	is one-to-one if ar te in the co-doma pre-image.		ıe [fals	e v	/					
$f: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x + f(x) = x - f(x)$		one-to-one] 1	not one	e-to-on	ie -	√	nc	ot a fu	onumber inctic	on
$f: \mathbb{N}^2 \to \mathbb{R}$ $f(p,q) = pq$!	ont	o [not o	onto	$\sqrt{}$	no	ot a f	functi	on [
	shirt has one of 6 irts. There is a suirts.			_		true			false]	
$\exists y \in \mathbb{N}, \ \forall x$	$\in \mathbb{Z}, \ x^2 = y$	tru	e _		false]					
	$A \to B. \text{ For } A, \text{ if } x = y, \text{ then } A.$	onto		one	e-to-on	e		neith	er [$\sqrt{}$		

Name:												
NetID:			_ Lecture:		e :	\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
colored pur drawer befo	Hermione Graing ple, magenta, sho ore she is guarant She needs to pu	ecking pink, a	and r two s	neon gr socks of	een. H	ow ma	ny so lor. E	cks n Briefly	nust s just:	she pu ify yo	ıll ou ur an	t of the swer.
	ns that two must				1-0]	· -	F,				
2. (12 points)	Check the (single	e) box that b	est c	characte	erizes e	each it	em.					
-	sition of two one- one-to-one.	to-one tru	e		false							
$g: \mathbb{R} \to \mathbb{R}$ $g(x) = \sin(x)$	x) one-to	o-one		not one	e-to-on	ie v	/	not	a fu	nction	n	
$g: \mathbb{Z} \to \mathbb{R}$ $g(x) = \lfloor x \rfloor$		onto		not or	nto	$\sqrt{}$	not	a fui	nctio	n		
	$\mathbb Z$ is a function su \mid then $\mathbb N$ is the $_$			domain mage	$\sqrt{}$		co-doi none (se [
$\forall x \in \mathbb{Z}, \ \exists y$	$\in \mathbb{N}, \ x^2 = y$	${ m tru}\epsilon$	9	$\sqrt{}$	false							
,	: $\mathbb{R} \to \mathbb{R}$. For \mathbb{R} , if $x < y$, then).	increasi	ng		stric	etly inc	ereasii	ng [$\sqrt{}$	ne	either	

Na	me:												
Ne	NetID:				${ m L}\epsilon$	ecture: A			\mathbf{B}				
Dis	cussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1.		Suppose that $ A $ ify or show work.	=3 and E	S = 2	2. How	many	onto i	functi	ons aı	re th	ere fr	om A	I to B ?
	and $B = \{4$ mapping to	It doesn't matte 4,5}. Two elements the other output ices for which ou	its of A must value. Then	t map e are	to the	e same choices	output for w	t valu hich e	ıe, wit lemen	th that x is	e thiis. An	rd ele	ment x
2.	(12 points)	Check the (single	e) box that h	oest c	haract	erizes e	each it	em.					
		n is onto, then eachas at least one p		ne t	rue	\checkmark	fals	e					
	$g: \mathbb{R} \to \mathbb{Z}$ $g(x) = \lfloor x \rfloor$	one-	-to-one]	not o	ne-to-c	one [$\sqrt{}$	no	t a f	unctio	on [
	$g: \mathbb{Z} \to \mathbb{R}$ $g(x) = x -$	0.314 onto	n	ot on	nto [<u>/</u>	not a	ı func	tion				
	tween 1 and hole princip	room is given and 10 (inclusive). le, if there are 21 code that is share	According to dorm rooms,	the then	pigeon there i	ı- s	true			false]	
	$\forall m,n\in\mathbb{Z},$	$\exists x \in \mathbb{Q}, \ x = \frac{m}{n}$	tru	е		false	·						
		$A \to B$. For all ere is an $x \in A$,	onto		on	e-to-on	ne		neith	ner			