$(f \circ g)(x)$

Name:					`				ŕ			
NetID:		_	Lecture:				В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(- /	How many difference is etts''? Show		string	gs can l	oe mac	le be r	earrai	nging	the l	letters	s in th	ne word
2. (12 points)	Check the (single	e) box that l	best o	haract	erizes e	each it	em.					
	n from \mathbb{R} to \mathbb{R} is it must be one-to	* + ***	ıe [false							
$g: \mathbb{Z} \to \mathbb{Z}$ $g(x) = 7 -$	$\left\lfloor \frac{x}{3} \right\rfloor$	onto	no	ot onto		r	not a i	functi	on			
$g: (0, \frac{\pi}{2}) \to g(x) = \sin(x)$		o-one		not one	e-to-on	ne		not	a fur	nction	ı	
choose from single color	d 12 mailboxes. n and each mailboxes. By the pigeons at least two mail	ox is painted nole principle	l with	a		true			fals	ee _		
$\exists y \in \mathbb{N}, \ \forall x$	$x \in \mathbb{N}, \ x = xy$	${ m tru}_{ m c}$	e		false							

f(g(x)) neither

Name:												
NetID:			-	$L\epsilon$	ecture	e:	${f A}$	В				
Discussion	Thursday	Friday	Q	10	11	19	1	2	3	1	5	6

1. (5 points) Suppose that |A| = p, |B| = q, |C| = n. How many different functions are there from $A \times B$ to C?

2. (12 points) Check the (single) box that best characterizes each item.

If a function from \mathbb{R} to \mathbb{R} is increasing, it must be one-to-one.

 $g: \mathbb{Z} \to \mathbb{R}$ g(x) = x + 2.137 one-to-one not one-to-one not a function

 $g: \mathbb{Z} \to \mathbb{Z}$ onto not onto not a function

Each ACM shirt has one of 6 trendy slogans. I bought

13 ACM shirts. Each slogan appears on at least two shirts.

true false

 $\forall x \in \mathbb{Z}, \ \exists y \in \mathbb{Z}, \ x \neq y \text{ and } x + y = 0$ true false

Suppose $f: A \to B$. For all $x, y \in A$, if f(x) = f(y), onto one-to-one neither then x = y.

all $x \in A$, there is a $y \in B$,

f(x) = y.

Name:												
NetID:			_	Le	ctur	e:	\mathbf{A}	\mathbf{B}				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Society. Ho	10 men and 15 vow many different one man and one	t ways can	-	_			_				_	
2. (12 points)	Check the (single	e) box that	best c	haracte	erizes e	each it	${ m em}.$					
If $f: A \to B$	B is onto, then	$ A \ge $	B		$ A \leq$	$\leq B $		2	4 =	B		
$f: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x + f(x) = x - f(x)$		onto]	not or	nto [not	a fun	ction	n		
$g: \mathbb{N} \to \mathbb{Z}$ $g(x) = x^2$	one-to	o-one		not one	e-to-on	ne		not	a fur	nction		
	shirt has one of 6 rts. At least three ogan.			_		true		i	false]	
$\forall x \in \mathbb{R}, \ \exists m$	$n, n \in \mathbb{Z}, \ x = \frac{m}{n}$	tru	e		false	e)						
Suppose f	$: A \to B$. For						_					

onto

one-to-one

neither

Name:												
NetID:			_	$L\epsilon$	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (5 points) How many different 9-letter strings can be made be rearranging the letters in the word 'silliness'? Show your work.

2. (12 points) Check the (single) box that best characterizes each item.

A function is one-to-one if and only if each value in the co-domain has exactly one pre-image.

 $f: \mathbb{Z} \to \mathbb{Z}$ $f(x) = x + 4 \text{ ($x$ even)}, \quad \text{one-to-one} \quad \text{not one-to-one} \quad \text{not a function} \quad \text{}$ f(x) = x - 21 (\$x\$ odd)

 $f: \mathbb{N}^2 \to \mathbb{R}$ onto onto not a function not a function

Each ACM shirt has one of 6 trendy slogans. I bought

13 ACM shirts. There is a slogan that appears on at true false least two shirts.

 $\exists y \in \mathbb{N}, \ \forall x \in \mathbb{Z}, \ x^2 = y$ true false

Suppose $f: A \to B$. For all $x, y \in A$, if x = y, then onto one-to-one neither f(x) = f(y).

Suppose $f : \mathbb{R} \to \mathbb{R}$. For all $x, y \in \mathbb{R}$, if x < y, then

f(x) < f(y).

neither

strictly increasing

Name:												
NetID:			<u>-</u>	Le	ctur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
colored pur	Hermione Graing ple, magenta, sho bre she is guarant	ocking pink, a	and r	neon gr	een. H	ow ma	ny so	cks m	ust s	he pu	ıll ou	t of th
2. (12 points)	Check the (single	e) box that b	est c	haracte	erizes e	each it	em.					
The compositions is	sition of two one- one-to-one.	to-one tru	e		false							
$g: \mathbb{R} \to \mathbb{R}$ $g(x) = \sin(x)$	r) one-t	o-one		not one	e-to-on	e		not	a fun	ction		
$g: \mathbb{Z} \to \mathbb{R}$ $g(x) = \lfloor x \rfloor$		onto		not or	nto [not	a fun	ction	ı		
	$\mathbb Z$ is a function su \mid then $\mathbb N$ is the $_$			lomain mage			o-don	nain of thes	se [
$\forall x \in \mathbb{Z}, \ \exists y$	$\in \mathbb{N}, \ x^2 = y$	true	e [false							

increasing

Name:												
NetID:			_	Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
	Suppose that $ A $ fy or show work.		3 = 2	. How	many	onto	functi	ons a	re th	ere fr	om A	4 to <i>B</i> ?
2. (12 points)	Check the (single	e) box that l	best c	haract	erizes (each it	em.					
	n is onto, then each		he t	rue		false	е					
$g: \mathbb{R} \to \mathbb{Z}$ $g(x) = \lfloor x \rfloor$	one	-to-one		not o	ne-to-c	one [no	t a fu	ınctic	n	
$g: \mathbb{Z} \to \mathbb{R}$ $g(x) = x -$	0.314 onto	n	not on	ito [not a	ı func	tion				
tween 1 and hole princip	room is given at l 10 (inclusive). le, if there are 21 code that is shar	According to	o the , then	pigeon there i	ı- İs	true		į	false]	
$\forall m,n\in\mathbb{Z},$	$\exists x \in \mathbb{Q}, \ x = \frac{m}{n}$	tru	e		false	e						
	$A \to B$. For all the re is an $x \in A$,			one	e-to-on	e _		neith	er [