Name:												
NetID:				Lecture: A				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(10 points) Suppose that $g: \mathbb{N} \to \mathbb{N}$ is one-to-one. Let's define the function $f: \mathbb{N}^2 \to \mathbb{N}^2$ by the equation f(x,y) = (x+g(y),g(x)). Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

Solution: Let (x,y) and (a,b) be pairs of natural numbers and suppose that f(x,y)=f(a,b).

By the definition of f, we know that x + g(y) = a + g(b) and g(x) = g(a).

Since g is one-to-one and g(x) = g(a), x = a. Substituting this into x + g(y) = a + g(b), we get x + g(y) = x + g(b), so g(y) = g(b).

Since g is one-to-one, g(y) = g(b) implies that y = b.

Since x = a and y = b, (x, y) = (a, b), which is what we needed to show.

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(10 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is onto. Let's define $g: \mathbb{Z}^2 \to \mathbb{Z}^2$ by g(x,y) = (f(x) + y, y + 3). Prove that g is onto.

Solution: Suppose that (a, b) is a pair of integers.

Consider c = a - b + 3. c is an integer, since a and b are integers. Since f is onto, this means there is an integer x such that f(x) = c.

Now, let y = b - 3. We can then calculate:

$$g(x,y) = (f(x) + y, y + 3) = (c + y, (b - 3) + 3) = ((a - b + 3) + (b - 3), b) = (a, b)$$

So we've found a point (x, y) such that g(x, y) = (a, b), which is what we needed to show.

CS 173, Spring 18

Examlet 6, Part A

3

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(10 points) Suppose that $f:(0,\infty)\to(\frac{5}{4},\infty)$ is defined by $f(x)=\frac{5x^2+3}{4x^2}$. Proof that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

Solution: Let x and y be positive real numbers and suppose that f(x) = f(y). By the definition of f, this translates into

$$\frac{5x^2+3}{4x^2} = \frac{5y^2+3}{4y^2}$$

So
$$\frac{5}{4} + \frac{3}{4} \frac{1}{x^2} = \frac{5}{4} + \frac{3}{4} \frac{1}{y^2}$$

So
$$\frac{3}{4} \frac{1}{x^2} = \frac{3}{4} \frac{1}{y^2}$$

So
$$\frac{1}{x^2} = \frac{1}{y^2}$$

So
$$x^2 = y^2$$
.

Since x and y are known to be positive, this implies that x = y, which is what we needed to show.

CS 173, Spring 18

Examlet 6, Part A

4

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(10 points) Suppose that $f: \mathbb{Z}^2 \to \mathbb{Z}$ is defined by $f(x,y) = xy + yx^2 - x^2$. Prove that f is onto.

Solution:

Notice that $f(x, y) = xy + (y - 1)x^2$.

Let p be an integer. We need to find a pre-image for p.

Consider m = (p, 1).

m is an element of \mathbb{Z}^2 . We can compute

$$f(m) = p \cdot 1 + (1-1)p^2 = p + 0 \cdot p^2 = p$$

So m is a pre-image of p.

Since we can find a pre-image for an arbitrarily chosen integer, f is onto.

Thursday

Discussion:

12

1

 $\mathbf{2}$

3

4

5

6

 Name:______
 Lecture: A B

9

(10 points) Suppose that A and B are sets. Suppose that $f: B \to A$ and $g: A \to B$ are functions such that f(g(x)) = x for every $x \in A$. Prove that g is one-to-one.

10

11

Solution: Let m and n be elements of A. Suppose that g(m) = g(n).

Friday

Since g(m) = g(n), f(g(m)) = f(g(n)) by substitution. Since f(g(x)) = x for every $x \in A$, f(g(m)) = m and f(g(n)) = n. So f(g(m)) = f(g(n)) implies that m = n.

Since g(m) = g(n) implies that m = n for any m and n in A, g is one-to-one, which is what we needed to prove.

Name:													
NetID:				Lecture: A					В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6	

(10 points) Suppose that $f:[0,\frac{1}{2}]\to[1,\frac{5}{2}]$ is defined by $f(x)=\frac{x^2+1}{1-2x^2}$ Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

Solution:

Let x and y be any numbers in $[0,\frac{1}{2}]$ and suppose f(x)=f(y), that is

$$\frac{x^2 + 1}{1 - 2x^2} = \frac{y^2 + 1}{1 - 2y^2}$$

$$\Rightarrow (x^2 + 1)(1 - 2y^2) = (y^2 + 1)(1 - 2x^2)$$

$$\Rightarrow x^2 + 1 - 2x^2y^2 - 2y^2 = y^2 + 1 - 2x^2y^2 - 2x^2$$

$$\Rightarrow 3x^2 = 3y^2$$

$$\Rightarrow x = y$$

(The last step works because x and y are both positive.)

Therefore f is one-to-one.