CS 173, Spring 18

Examlet 6, Part A

1

Name:												
NetID:	-	Le	ecture	e:	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(10 points) Suppose that $g: \mathbb{N} \to \mathbb{N}$ is one-to-one. Let's define the function $f: \mathbb{N}^2 \to \mathbb{N}^2$ by the equation f(x,y) = (x+g(y),g(x)). Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

Name:_____ NetID:_____ Lecture: \mathbf{A} \mathbf{B}

Discussion: Thursday Friday 9 **10** 11 **12** 1 $\mathbf{2}$ 3 6 4 5

(10 points) Suppose that $f: \mathbb{Z} \to \mathbb{Z}$ is onto. Let's define $g: \mathbb{Z}^2 \to \mathbb{Z}^2$ by g(x,y) = (f(x) + y, y + 3). Prove that g is onto.

Name:												
NetID:					ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	Q	10	11	19	1	2	3	1	5	6

(10 points) Suppose that $f:(0,\infty)\to(\frac{5}{4},\infty)$ is defined by $f(x)=\frac{5x^2+3}{4x^2}$. Proof that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.

Name:_____

Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 **10** 11 **12** 1 $\mathbf{2}$ 3 6 4 5

(10 points) Suppose that $f: \mathbb{Z}^2 \to \mathbb{Z}$ is defined by $f(x,y) = xy + yx^2 - x^2$. Prove that f is onto.

Name:												
NetID:	-	$L\epsilon$	ecture	e :	\mathbf{A}	В						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(10 points) Suppose that A and B are sets. Suppose that $f: B \to A$ and $g: A \to B$ are functions such that f(g(x)) = x for every $x \in A$. Prove that g is one-to-one.

Name:												
NetID:		-	$L\epsilon$	ecture	e:	${f A}$	В					
Discussion	Thursday	Friday	Q	10	11	19	1	2	3	1	5	6

(10 points) Suppose that $f:[0,\frac{1}{2}]\to[1,\frac{5}{2}]$ is defined by $f(x)=\frac{x^2+1}{1-2x^2}$ Prove that f is one-to-one. You must work directly from the definition of one-to-one. Do not use any facts about (for example) derivatives or the behavior of increasing functions.