NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{p=0}^{n} (p \cdot p!) = (n+1)! - 1$$
, for all natural numbers n .

Recall that 0! is defined to be 1.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{j=2}^{n} \frac{1}{j(j-1)} = \frac{n-1}{n}$$
 for all integers $n \ge 2$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:			_	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Working direc	tly from the defin	nition of div	rides,	use (st	rong) i	nduct	ion to	prove	the	follo	wing	claim
Claim: $(4n)$! is divisible by 8	8^n , for all po	sitive	intege	rs n .							
Proof by indu	ction on n .											
Base case(s)	:											
Inductive H	ypothesis [Be sp	pecific, don't	t just	refer to	o "the	claim'	']:					

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Use (strong) induction to prove the following claim:

Claim:
$$\sum_{j=1}^{n} j(j+1) = \frac{n(n+1)(n+2)}{3}$$
, for all positive integers n .

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

Use (strong) induction to prove the following claim:

For all positive integers
$$n$$
, $\sum_{p=1}^{n} p2^p = (n-1)2^{n+1} + 2$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:			_	Lecture:			A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
Use (strong) i	nduction to prove	e the followi	ng cla	aim.								
Claim: For the one's di	any positive integgit is 8.)	$ger n, 2^{4n-1} e$	ends i	n the d	ligit 8.	(I.e. v	when v	writte	n ou	t in b	ase-10),
Proof by indu	ction on n .											
Base case(s)	:											
Inductive H	ypothesis [Be sp	oecific, don't	just	refer to	o "the	claim'	·]:					