Name:

NetID: Lecture: \mathbf{A}

Discussion: Thursday Friday 9 **10** 11 **12** 1 2 3 6 5 4

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

Chromatic number of a graph with no cycles and at least one edge

can't tell

15 guests are invited to brunch. Each guest will eat at least two buns. 20 is _____ on how many buns we will need.

an upper bound on a lower bound on

exactly
not a bound on

 \mathbf{B}

$$\sum_{k=0}^{n-1} \frac{1}{2^k}$$

$$\sum_{k=0}^{n-1} \frac{1}{2^k} \qquad 1 - (\frac{1}{2})^{n-1} \qquad \qquad 2 - (\frac{1}{2})^n \qquad \qquad 1 - (\frac{1}{2})^n \qquad \qquad 2 - (\frac{1}{2})^{n-1}$$

$$2 - (\frac{1}{2})^n$$

$$1 - (\frac{1}{2})^n$$

$$2 - (\frac{1}{2})^{n-1}$$

Lecture: \mathbf{A} \mathbf{B}

Thursday Friday 2 3 Discussion: 9 **10** 11 **12** 1 4 5 6

1. (11 points) Let's define two sets as follows:

$$A = \{x \in \mathbb{R} : |x+1| \le 2\}$$
$$B = \{w \in \mathbb{R} : w^2 + 2w - 3 \le 0\}$$

Prove that A = B by proving two subset inclusions.

2. (4 points) Check the (single) box that best characterizes each item.

P			
$\sum_{i=1}^{n} i \frac{p(i)}{n}$	$\frac{(p-1)}{2}$	$\frac{p(p+1)}{2}$	$\frac{(p-1)(p+1)}{2}$

<u>≤</u> 3 Chromatic number of C_n .

NetID:_

Lecture: \mathbf{A} \mathbf{B}

Discussion:

Friday Thursday

10

11

12

1 $\mathbf{2}$ 4

3

6 5

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

$$\sum_{k=1}^{n-1} \frac{1}{2^k}$$

$$1-(\frac{1}{2})^n$$

$$2 - (\frac{1}{2})^n$$

$$2 - \left(\frac{1}{2}\right)^{n-1}$$

10 guests are invited to brunch. Each guest will eat at least two buns. 30 is _____ on how many buns we will need.

an upper bound on a lower bound on

exactly
not a bound on

Chromatic number of a graph with maximum vertex degree D

$$= D$$

$$\leq D + 1$$

$$=D+1$$

NetID: Lecture: \mathbf{B}

Discussion: Thursday Friday **10 12** 2 3 9 11 1 6 4 5

1. (11 points) If G is a graph, recall that $\chi(G)$ is its chromatic number. Suppose that G is a graph and H is another graph, not connected to G. Now, create a new graph T which consists of a copy of G, a copy of H, and a new edge that connects some node of G to some node of H. For example, suppose that G is C_5 and H is K_4 . Then T might look as follows, where g marks nodes of G and h marks nodes of H, and the new edge is the dashed line.

Describe how $\chi(T)$ is related to $\chi(G)$ and $\chi(H)$, justifying your answer. Your answer should handle any choice for G and H.

2. (4 points) Check the (single) box that best characterizes each item.

n-1				
$\sum 2^k$	$2^n - 2$	$2^n - 1$	$2^{n-1}-1 \qquad $	$2^{n+1} - 1$
k=0				

All elements of X are also elements of M.

$$M = X$$
 $M \subseteq X$ $X \subseteq M$

NetID: Lecture: \mathbf{A} \mathbf{B}

Thursday Friday Discussion: 9 **10** 11 12 1 $\mathbf{2}$ 3 6 5 4

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

$$\sum_{k=1}^{n} \frac{1}{2^k}$$

$$(\frac{1}{2})^n$$

$$1-(\frac{1}{2})^n$$

$$2 - (\frac{1}{2})^{n-1}$$

Graph H has 6 nodes. 7 is _____ the chromatic number of H.

an upper bound on a lower bound on

exactly
not a bound o

Chromatic number of G

 $\mathcal{C}(G)$

 $\phi(G)$

 $\chi(G)$

 $\parallel G \parallel$

Name:_

NetID: Lecture: \mathbf{A} \mathbf{B}

Friday 3 Thursday 2 Discussion: 9 **10** 11 **12** 1 6 4 5

1. (9 points) What is the chromatic number of the graph below? Justify your answer.

2. (6 points) Check the (single) box that best characterizes each item.

$$\sum_{k=1}^{n} k$$

$$\sum_{n=1}^{n} (n-p+1)$$

$$\sum_{n=0}^{\infty} (n-p)$$

$$\sum_{n=0}^{n} (n -$$

$$\sum_{n=1}^{n} (n-p+1) \qquad \sum_{n=1}^{n} (n-p) \qquad \sum_{n=0}^{n} (n-p) \qquad \sum_{n=1}^{n+1} (n-p) \qquad \Box$$

10 students drove home in John's van. 10 is _____ how many students the van can carry.

an upper bound on a lower bound on

exactly	
not a bound on	

Chromatic number of a graph (with at least one node) and no edges.

can't tell