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Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Let x be a non-zero real number such that x+ 1

x
is an integer. Use (strong) induction to

prove that xn + 1

xn is an integer, for any natural number n.

Hint: (an + bn)(a+ b) = (an+1 + bn+1) + ab(an−1 + bn−1), for any real numbers a and b.

Solution: Let x be a non-zero real number such that x+ 1

x
.

Proof by induction on n.

Base case(s): At n = 0, xn + 1

xn = 1 + 1 = 2, which is an integer for any non-zero x.

At n = 1, xn + 1

xn = x+ 1

x
, so the claim is obviously true.

[Notice that we need two base cases because our inductive step will use the result at two previous
values of n.]

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that xn + 1

xn is an
integer, for n = 0, 1, . . . , k.

Rest of the inductive step:

Using the hint, we get

xk+1 +
1

xk+1
= (xk +

1

xk
)(1 +

1

x
)− (x ·

1

x
)(xk−1 +

1

xk−1
) = (xk +

1

xk
)(1 +

1

x
)− (xk−1 +

1

xk−1
)

By the inductive hypothesis, xk+ 1

xk and xk−1+ 1

xk−1 are integers. We were also given that (1+ 1

x
) is an

integer. The righthand side must be an integer since it’s made by multiplying and subtracting integers.
So the lefthand side xk+1 + 1

xk+1 must also be an integer. This is what we needed to show.
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(20 points) Suppose that h : Z+ → Z
+ is defined by

h(1) = 1 h(2) = 7

h(n+ 1) = 7h(n)− 12h(n− 1) for all n ≥ 2

Use (strong) induction to prove that h(n) = 4n − 3n

Solution: Proof by induction on n.

Base case(s): At n = 1, h(1) = 1 and 4n − 3n = 4− 3 = 1. So the claim holds.

At n = 2, h(2) = 7 and 4n − 3n = 16− 9 = 7. So the claim holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that h(n) = 4n − 3n

for n = 1, 2, . . . , k.

Rest of the inductive step:

Using the definition of h and the inductive step, we get

h(k + 1) = 7h(k)− 12h(k − 1)

= 7(4k − 3k)− 12(4k − 1 + 3k−1)

= 7(4k − 3k)− (3 · 4k + 4 · 3k)

= (7− 3)4k − (7− 4)3k = 4k+1
− 3k+1

So h(k + 1) = 4k+1 − 3k+1, which is what we needed to show.
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(20 points) Recall that Fn is the nth Fibonacci number, and the positive Fibonacci numbers start
with F1 = F2 = 1. Use (strong) induction to prove the following claim:

Claim: Every positive integer can be written as the sum of (one or more) distinct Fibonacci
numbers.

Hints: You can assume that the Fibonacci numbers are strictly increasing starting with F1. To write
x as the sum of Fibonacci numbers, start by including the largest Fibonacci number Fp such that Fp ≤ x.
(And therefore x < Fp+1.) How large is the remaining part of x?

Solution:

Proof by induction on n.

Base Case(s): At n = 1, n = 1 = F1. So n is the sum of a single Fibonacci number.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that n is the sum of
(one or more) distinct Fibonacci numbers, for n = 1, . . . , k − 1.

Inductive Step: Consider k. Notice that we can assume that k > 1, since n = 1 was already covered
in the base case. Let Fp be the largest Fibonacci number ≤ k. There are two cases:

Case 1: Fp = k. Then k is the sum of a single Fibonacci number.

Case 2: Fp < k. Let y = k − Fp. Since Fp must be positive, y is less than k. So we can apply the
inductive hypothesis to y. That is y = Fi1 + . . .+ Fij , where Fi1 . . . Fij are all distinct.

Notice that x < Fp+1 = Pp + Pp−1 So y = k − Fp < Pp−1. This means that Fi1 . . . Fij are all smaller
than Fp, so Fp can’t be equal to any of them.

So then k = y + Fp = (Fi1 + . . . Fij ) + Fp and the numbers in this sum are all distinct. So k is the
sum of (one or more) distinct Fibonacci numbers, which is what we needed to prove.
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(20 points) Use (strong) induction to prove the following claim:

For any positive integer n ≥ 2, if G is a graph with n nodes and more than (n− 1)(n− 2)/2
edges, then G is connected.

Hint: pick a node x. Perhaps x is connected to all the other nodes. If not, remove x to create a
smaller graph H . What is the smallest number of edges that could remain in H? Notice that H has too
few nodes to contain all the edges in G, so there is an edge from x to H .

Solution: Proof by induction on n.

Base case(s): n = 2 The graph has two nodes and one edge. There’s only one such graph and it’s
connected.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: If G is a graph with n nodes
and more than (n− 1)(n− 2)/2 edges, then G is connected, for n = 2, . . . , k − 1.

Rest of the inductive step: Let G be a graph with k nodes and more than (k− 1)(k− 2)/2 edges.

Pick a node x in G. Remove x (and its edges) to produce a smaller graph H .

Case 1: x is connected to all the other k − 1 nodes in G. Then there is a path from any node to any
other node, via x. So G is connected.

Case 2: x is connected to k− 2 or fewer nodes. This means that H must have more than (k− 1)(k−
2)/2 − (k − 2) edges. (k − 1)(k − 2)/2 − (k − 2) = (k − 1)(k − 2)/2 − 2(k − 2)/2 = (k − 3)(k − 2)/2.
So H has k − 1 nodes and more than (k − 3)(k − 2)/2 edges. By the inductive hypothesis, H must be
connected.

H has k− 1 nodes. The maximum number of edges in H is (k− 1)(k− 2)/2, i.e. the number of edges
in a complete graph. Since G has more edges than that, there must be at least one edge connecting x to
a node of H .

Since H is connected, and x is connected to a node in H , the full graph G is connected, which is what
we needed to prove.
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(20 points) Recall that Fn is the nth Fibonacci number, and these start with F0 = 0, F1 = 1. Use
(strong) induction to prove the following claim:

Claim: Fn−1Fn+1 − (Fn)
2 = (−1)n for any positive integer n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, Fn−1Fn+1 − (Fn)
2 = F0F2 − (F1)

2 = 0 − 1 = −1 = (−1)n. So the claim
holds.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that Fn−1Fn+1−(Fn)
2 =

(−1)n for n = 1, . . . , k.

Inductive Step: By the definition of the Fibonacci numbers, Fk+2 = Fk+1 + Fk. So

FkFk+2 − (Fk+1)
2 = Fk(Fk+1 + Fk)− (Fk+1)

2 = (Fk)
2 + FkFk+1 − (Fk+1)

2 = (Fk)
2 + Fk+1(Fk − Fk+1)

But since Fk+1 = Fk + Fk−1, Fk − Fk+1 = −Fk−1. So

FkFk+2 − (Fk+1)
2 = (Fk)

2 − Fk+1Fk−1 = (−1)(Fk+1Fk−1 − (Fk)
2)

By the inductive hypothesis, Fk−1Fk+1− (Fk)
2 = (−1)k. Substituting this into the previous equation,

we get

FkFk+2 − (Fk+1)
2 = (−1)(−1)k

So FkFk+2 − (Fk+1)
2 = (−1)k+1, which is what we needed to prove.
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(20 points) Let function f : N → Z be defined by

f(0) = 3

f(1) = 9

f(n) = f(n− 1) + 2f(n− 2), for n ≥ 2

Use (strong) induction to prove that f(n) = 4 · 2n + (−1)n−1 for any natural number n.

Solution: Proof by induction on n.

Base case(s): For n = 0, we have 4 · 20 + (−1)−1 = 4 − 1 = 3 which is equal to f(0). So the claim
holds.

For n = 1, we have 4 · 21 + (−1)0 = 8 + 1 = 9 which is equal to f(1). So the claim holds.

Inductive hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that f(n) = 4 · 2n +
(−1)n−1 for n = 0, 1, . . . , k − 1 where k ≥ 2.

Rest of the inductive step:

f(k) = f(k − 1) + 2f(k − 2) by definition of f

= (4 · 2k−1 + (−1)k−2) + 2(4 · 2k−2 + (−1)k−3) by inductive hypothesis

= (4 · 2k−1 + (−1)k−2) + 4 · 2k−1 + 2(−1)k−3

= 8 · 2k−1 + (−1)k−2
− 2(−1)k−2

= 4 · 2k − (−1)k−2

= 4 · 2k + (−1)k−1

So f(k) = 4 · 2k + (−1)k−1, which is what we needed to show.


