Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Let x be a non-zero real number such that $x + \frac{1}{x}$ is an integer. Use (strong) induction to prove that $x^n + \frac{1}{x^n}$ is an integer, for any natural number n.

Hint: $(a^n + b^n)(a + b) = (a^{n+1} + b^{n+1}) + ab(a^{n-1} + b^{n-1})$, for any real numbers a and b.

Let x be a non-zero real number such that $x + \frac{1}{x}$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Suppose that $h: \mathbb{Z}^+ \to \mathbb{Z}^+$ is defined by

$$h(1) = 1$$
 $h(2) = 7$

$$h(n+1) = 7h(n) - 12h(n-1)$$
 for all $n \ge 2$

Use (strong) induction to prove that $h(n) = 4^n - 3^n$

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:			_	Le	ecture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(20 points) Recall that F_n is the nth Fibonacci number, and the positive Fibonacci numbers start with $F_1 = F_2 = 1$. Use (strong) induction to prove the following claim:

Claim: Every positive integer can be written as the sum of (one or more) distinct Fibonacci numbers.

Hints: You can assume that the Fibonacci numbers are strictly increasing starting with F_1 . To write x as the sum of Fibonacci numbers, start by including the largest Fibonacci number F_p such that $F_p \leq x$. (And therefore $x < F_{p+1}$.) How large is the remaining part of x?

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:			_	$_{ m Le}$	Lecture:			В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(20 points) U	Jse (strong) induc	ction to prov	e the	follow	ing cla	im:						
	sitive integer $n \ge G$ is connected.	2, if G is a	graph	n with	$n ext{ node}$	s and	more	than	(n -	1)(n	- 2),	/2
Hint: pick a smaller graph H . few nodes to confidence of the smaller pick and H .		allest numbe	r of e	dges tl	nat cou	ıld ren	nain ii					
Proof by indu	action on n .											
Base case(s)) :											
Inductive H	ypothesis [Be s]	pecific, don't	just	refer t	o "the	claim ²	"]:					

Name:____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Recall that F_n is the nth Fibonacci number, and these start with $F_0 = 0$, $F_1 = 1$. Use (strong) induction to prove the following claim:

Claim: $F_{n-1}F_{n+1} - (F_n)^2 = (-1)^n$ for any positive integer n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(20 points) Let function $f: \mathbb{N} \to \mathbb{Z}$ be defined by

$$f(0) = 3$$

$$f(1) = 9$$

$$f(n) = f(n-1) + 2f(n-2)$$
, for $n \ge 2$

Use (strong) induction to prove that $f(n) = 4 \cdot 2^n + (-1)^{n-1}$ for any natural number n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: