NetID:____ Lecture: \mathbf{A} \mathbf{B}

Friday 9 3 Discussion: Thursday 10 11 12 1 $\mathbf{2}$ 6 4 5

(10 points) Suppose we have a function F defined (for n a power of 2) by

$$F(2) = 17$$

 $F(n) = 3F(n/2), \text{ for } n \ge 4$

Use unrolling to find the closed form for F. Show your work and simplify your answer.

Solution:

$$F(n) = 3F(n/2) = 3(3F(n/4)) = 3(3(3(F(n/2^3))))$$

= $3^3F(n/2^3)$
= $3^kF(n/2^k)$

We'll hit the base case when $n/2^k = 2$, i.e. $n = 2^{k+1}$, i.e. $k+1 = \log_2 n$, $k = \log_2 n - 1$. Substituting this value into the above equation, we get

$$\begin{split} F(n) &= 3^{\log_2 n - 1} \cdot 17 \\ &= 17/3 \cdot 3^{\log_2 n} = 17/3 \cdot 3^{\log_3 n \log_2 3} \\ &= 17/3 n^{\log_2 3} \end{split}$$

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Suppose we have a function g defined (for n a power of 2) by

$$g(1) = c$$

$$g(n) = 4g(n/2) + d \text{ for } n \ge 2$$

Express g(n) in terms of $g(n/2^3)$ (where $n \ge 8$). Show your work and simplify your answer. You do **not** need to find a closed form for g(n).

Solution:

$$g(n) = 4g(n/2) + d$$

$$= 4(4g(n/2^{2} + d) + d)$$

$$= 4(4(4g(n/2^{3}) + d) + d) + d$$

$$= 4^{3}g(n/2^{3}) + 21d$$

2. (2 points) Check the (single) box that best characterizes each item.

f(n)=n! can be defined recursively by f(0)=1, and f(n+1)=(n+1)f(n) for all integers ... $n\geq 0$ $n\geq 1$ $n\geq 2$

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Suppose we have a function g defined (for n a power of 3) by

$$g(9) = 5$$

 $g(n) = 3g(n/3) + n \text{ for } n \ge 27$

Your partner has already figured out that

$$g(n) = 3^k g(n/3^k) + kn$$

Finish finding the closed form for g. Show your work and simplify your answer.

Solution:

To find the value of k at the base case, set $n/3^k = 9$. Then $n = 3^{k+2}$, so $k + 2 = \log_3 n$, so $k + 2 = \log_3 n - 2$ Substituting this into the above, we get:

$$g(n) = 3^{\log_3 n - 2} g(9) + (\log_3 n - 2)n$$

$$= 3^{\log_3 n} 3^{-2} 5 + n \log_3 n - 2n)$$

$$= \frac{5}{9} n + n \log_3 n - 2n = n \log_3 n - \frac{13}{9} n$$

2. (2 points) Suppose that G_0 is the graph consisting of a single vertex. Also suppose that the graph G_n consists of a copy of G_{n-1} plus an extra vertex v and edges joining v to each vertex in G_{n-1} . Give a clear picture or precise description of G_4 .

Solution: This is a recursive construction of all the complete graphs, except for the indexing being off by one. So G_4 is just K_5 .

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(10 points) Suppose we have a function F defined (for n a power of 3) by

$$F(1) = 5$$

 $F(n) = 3F(n/3) + 7 \text{ for } n \ge 3$

Your partner has already figured out that

$$F(n) = 3^k F(n/3^k) + 7 \sum_{p=0}^{k-1} 3^p$$

Finish finding the closed form for F. Show your work and simplify your answer. Recall the following useful closed form (for $r \neq 1$): $\sum_{k=0}^{n} r^k = \frac{r^{n+1} - 1}{r - 1}$

Solution:

To find the value of k at the base case, set $n/3^k = 1$. Then $n = 3^k$, so $k = \log_3 n$. Substituting this into the above, we get

$$F(n) = 3^{\log_3 n} \cdot 5 + 7 \sum_{p=0}^{\log_3 n-1} 3^p$$

$$= 5n + 7 \frac{3^{\log_3 n} - 1}{3-1}$$

$$= 5n + 7 \frac{n-1}{3-1} = 5n + \frac{7(n-1)}{2}$$

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Suppose we have a function g defined (for n a power of 2) by

$$g(1) = c$$

$$g(n) = 4g(n/2) + n \text{ for } n \ge 2$$

Express g(n) in terms of $g(n/2^3)$ (where $n \ge 8$). Show your work and simplify your answer. You do **not** need to find a closed form for g(n).

Solution:

$$g(n) = 4g(n/2) + n$$

$$= 4(4g(n/4) + n/2) + n$$

$$= 4(4(4g(n/8) + n/4) + n/2) + n$$

$$= 4^{3}g(n/8) + 4n + 2n + n$$

$$= 4^{3}g(n/8) + 7n$$

2. (2 points) Check the (single) box that best characterizes each item.

The diameter of the 4-dimensional hypercube Q_4

 $1 \quad \boxed{} \quad 2 \quad \boxed{} \quad 4 \quad \boxed{\checkmark} \quad 16 \quad \boxed{}$

Name:			

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Suppose we have a function f defined (for n a power of 2) by

$$f(1) = 5$$

 $f(n) = 3f(n/2) + n^2 \text{ for } n \ge 2$

Express f(n) in terms of $f(n/2^3)$ (where $n \ge 8$). Show your work and simplify your answer. You do **not** need to find a closed form for f(n).

Solution:

$$\begin{split} f(n) &=& 3f(n/2) + n^2 \\ &=& 3(3f(n/4) + (n/2)^2) + n^2 \\ &=& 3(3(3f(n/8) + (n/4)^2) + (n/2)^2) + n^2 \\ &=& 27f(n/2^3) + (3/4)n^2 + (9/16)n^2 + n^2 \\ &=& 27f(n/2^3) + (2+5/16)n^2 \end{split}$$

2.	(2 points)	Check the	(single)	box that	${\it best}$	characterizes	each item
----	------------	-----------	----------	----------	--------------	---------------	-----------

The n-dimensional

hypercube Q_n has an Euler circuit.

always

sometimes

 $\sqrt{}$

never