Name:_____

NetID:_____ Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 **10** 11 **12** 1 $\mathbf{2}$ 3 6 4 5

(10 points) Suppose we have a function F defined (for n a power of 2) by

$$F(2) = 17$$

 $F(n) = 3F(n/2), \text{ for } n \ge 4$

Use unrolling to find the closed form for F. Show your work and simplify your answer.

Name:_____

NetID:_ Lecture: \mathbf{A} \mathbf{B}

Discussion: Friday 2 3 Thursday 9 **10** 11 12 1 4 6 5

1. (8 points) Suppose we have a function g defined (for n a power of 2) by

$$g(1) = c$$

$$g(n) = 4g(n/2) + d \text{ for } n \ge 2$$

Express g(n) in terms of $g(n/2^3)$ (where $n \geq 8$). Show your work and simplify your answer. You do **not** need to find a closed form for g(n).

2. (2 points) Check the (single) box that best characterizes each item.

f(n) = n! can be defined recursively by f(0) = 1, and f(n+1) = (n+1)f(n) $n \ge 0$ $n \ge 1$ $n \ge 2$ for all integers ...

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Suppose we have a function g defined (for n a power of 3) by

$$g(9) = 5$$

 $g(n) = 3g(n/3) + n \text{ for } n \ge 27$

Your partner has already figured out that

$$g(n) = 3^k g(n/3^k) + kn$$

Finish finding the closed form for g. Show your work and simplify your answer.

2. (2 points) Suppose that G_0 is the graph consisting of a single vertex. Also suppose that the graph G_n consists of a copy of G_{n-1} plus an extra vertex v and edges joining v to each vertex in G_{n-1} . Give a clear picture or precise description of G_4 .

CS 173, Spring 18

Examlet 8, Part B

4

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(10 points) Suppose we have a function F defined (for n a power of 3) by

$$F(1) = 5$$

 $F(n) = 3F(n/3) + 7 \text{ for } n \ge 3$

Your partner has already figured out that

$$F(n) = 3^k F(n/3^k) + 7 \sum_{p=0}^{k-1} 3^p$$

Finish finding the closed form for F. Show your work and simplify your answer. Recall the following useful closed form (for $r \neq 1$): $\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$

Name:												
NetID:				Lecture:				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (8 points) Suppose we have a function g defined (for n a power of 2) by

$$g(1) = c$$

$$g(n) = 4g(n/2) + n \text{ for } n \ge 2$$

Express g(n) in terms of $g(n/2^3)$ (where $n \ge 8$). Show your work and simplify your answer. You do **not** need to find a closed form for g(n).

2. (2 points) Check the (single) box that best characterizes each item.

The diameter of the 4-dimensional hypercube Q_4

1

2

4

16

Name:												
NetID:				$L\epsilon$	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	Q	10	11	19	1	2	3	1	5	6

1. (8 points) Suppose we have a function f defined (for n a power of 2) by

$$f(1) = 5$$

 $f(n) = 3f(n/2) + n^2 \text{ for } n \ge 2$

Express f(n) in terms of $f(n/2^3)$ (where $n \ge 8$). Show your work and simplify your answer. You do **not** need to find a closed form for f(n).

2. (2 points) Check the (single) box that best characterizes each item.

The n-dimensional

hypercube Q_n has an Euler circuit.

always

sometimes

never