Name:												
NetID:	TetID:					Lecture:						
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(18 points) R start symbol S an	ecall that ϵ is should terminal symbol.		he en	npty (z	ero-ler	gth) s	string.	Here	is a	gram	mar	G, with
		$S \rightarrow a$	S b S	8 b 8	S a S	$\mid \epsilon$						
Use (strong) is by grammar G . This fact (and the	·	w to build p	arse	trees fo	-						_	
	ose the number of de w into $w = xa$ o's.		_									
The induction	variable is name	ed an	d it i	is the $_{-}$				of/in	the s	string		
Base Case(s):											
Inductive H	ypothesis [Be s	specific, doi	n't ji	ust rei	fer to	"the	claim	n "]:				
Inductive St	ep:											

Name:												
NetID:			_	Lecture:			\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
 If X is a lea If X has one If X has twee 	Vintage tree is a x of, x of, x is 7, 23, where x is child x , then x of the children x and the function to prove	or 31. $v(X) = v(Y)$ Z, then $v(Z)$	+7. $X) =$	v(Y)v((Z).							X) such
The induction	variable is name	ed ar	nd it i	is the _				of/in	the t	ree.		
Base Case(s)):											
Inductive H	ypothesis [Be s	specific, do	n't j	ust ref	fer to	"the	claim	ı"]:				
Inductive St	an:											

Name:												
NetID:				Le	e :	\mathbf{A}	В					
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(18 points) O	range trees are b	inary trees	whose	e nodes	are la	belled	with	string	s, su	ich th	nat	
• Each leaf no	ode has label tip	, top, or ta	ck									
	s one child, it has e parent has top		here '	where ϵ	α is the	e child	's labe	el. E.g	;. if	the cl	nild h	as label
	as two children, i						e child	l label	s. E	.g. if	the	children
Let S(n) be that n. Use (strong)	ne length of the la) induction to pr			` /								
The induction	variable is name	ed ar	nd it i	is the _				of/in	the 1	tree.		
Base Case(s)):											
Inductive H	ypothesis [Be s	pecific, do	n't j	ust rei	er to	"the	claim	1 "]:				
Inductive St	ep:											

Name:												
NetID:				Lecture:			${f A}$	\mathbf{B}				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(18 points) R tree is a full binar	ecall that a node ry tree whose nod							•				
 If an internation If an internation Use (strong) if the strong of the str	es have label (blual node has label al node has label (node has label (node has label)	(orange, p), then that a Illin	n its	children	n must root la	have l	abel (blue, p	blue, p	o-1)	or (o ge, p)	range	
The induction Base Case(s	variable is name):	ed an	id it	is the $_$				of/in	the t	cree.		
Inductive H	ypothesis [Be s	pecific, do	n't j	ust re:	fer to	"the	claim	n"]:				
Inductive St	ep:											

Inductive Step:

Name:												
NetID:			_	Le	ectur	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
 Every leaf n An internal An internal The "total value that the total value two odd numbers 	-	or 7. 0 has exactly 1 has exactly tree is the s tree is odd	y thro y two sum o . You	ee child childr of the l u may	lren. en. abels c assume	on all i	its no	des. U	fact	s e.g	-,	
Base Case(s)):											
Inductive H	ypothesis [Be s	pecific, do	n't j	ust re	fer to	"the	claim	n'"]:				

Inductive Step:

Name:												
NetID:				Lecture:		e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(18 points) He	ere is a grammar	G, with sta	rt sy	mbol S	and to	ermina	al sym	bols	a and	d b.		
		$S \rightarrow a S$	$b \mid$	$b S a \mid$	S S	a b						
Use (strong) in numbers of a's and	nduction to provid b's. Use $A(T)$				- '	_		- /	_			
The induction	variable is name	ed an	ıd it i	is the _				of/in	the t	ree.		
Base Case(s)	:											
Inductive Hy	vpothesis [Be s	pecific, do	n't j	ust ref	er to	"the	claim	·"]:				