Name:\_\_\_\_\_

Lecture:  $\mathbf{B}$ 

Thursday Friday 3 Discussion: **10** 11 9 **12** 1  $\mathbf{2}$ 6 4 5

1. (8 points) Here is a grammar with start symbol S and terminal symbols a and b. Draw three parse trees for the string ababab that match this grammar.



2. (4 points) Check the (single) box that best characterizes each item.

A tree node is a descendent of itself.

always sometimes never

The number of nodes in a full complete binary tree of height h

$$\geq 2^h \qquad \qquad \boxed{ \qquad } \qquad 2^{h+1} - 1 \qquad \boxed{ \checkmark }$$

$$\leq 2^{h+1} - 1$$
  $\geq 2^{h+1} - 1$ 

Name:\_\_\_\_\_

NetID: Lecture:  $\mathbf{B}$ 

Discussion: Thursday Friday 9 **12** 1  $\mathbf{2}$ 3 **10** 11 4 5 6

1. (8 points) Here is a grammar, with start variable S and terminals a and c. Circle the trees that match the grammar.

$$S \rightarrow SSa \mid cS \mid cc$$







2. (4 points) Check the (single) box that best characterizes each item.

A binary tree of height h has at most  $2^{h+1} - 1$  nodes.

true

false

A tree with n edges has \_\_\_\_ nodes.

| Name:                     |                                                                                               |                |        |            |          |         |              |     |       |   |   |   |  |  |
|---------------------------|-----------------------------------------------------------------------------------------------|----------------|--------|------------|----------|---------|--------------|-----|-------|---|---|---|--|--|
| NetID:                    |                                                                                               |                | -      | Lecture: A |          |         | $\mathbf{B}$ |     |       |   |   |   |  |  |
| Discussion:               | Thursday                                                                                      | Friday         | 9      | 10         | 11       | 12      | 1            | 2   | 3     | 4 | 5 | 6 |  |  |
| S –                       | Consider the following $a \ S \ b \   \ b \ S \ b \  $                                        | a b            |        |            |          | 1.7     |              |     |       |   |   |   |  |  |
| Here are tw               | ly start symbol. To sequences of least this sequence of                                       | of labels. For | each   | seque      | nce, eit | her dr  |              |     | ~     |   |   |   |  |  |
| -                         | Solution: This is impossible. Strings produced by Chave to end in a b, unless they are length |                |        |            |          |         |              |     |       |   |   |   |  |  |
| 2. (4 points) (           | Check the (single)                                                                            | box that be    | est ch | aracte     | rizes ea | ach ite | m.           |     |       |   |   |   |  |  |
| The root no internal no   | ode of a tree is an<br>de                                                                     | alwa           | ys     |            | some     | times   |              | 1   | never |   |   |   |  |  |
| The level of in a tree of | f the root node height $h$ .                                                                  | -1             | 0      | $\sqrt{}$  | 1        |         |              | h-1 |       | ] | h |   |  |  |

| Name:                       |                                                                                 |                                       |            |                   |                |    |                     |                                       |     |       |   |   |
|-----------------------------|---------------------------------------------------------------------------------|---------------------------------------|------------|-------------------|----------------|----|---------------------|---------------------------------------|-----|-------|---|---|
| NetID:                      |                                                                                 |                                       | Lecture: A |                   |                |    |                     | В                                     |     |       |   |   |
| Discussion:                 | Thursday                                                                        | Friday                                | 9          | 10                | 11             | 12 | 1                   | 2                                     | 3   | 4     | 5 | 6 |
| \ - /                       |                                                                                 | ~                                     |            | _                 |                |    | _                   |                                       |     |       |   |   |
| , - ,                       | Check the (single) non-empty bit ength $k$ .                                    | box that be $2^k  \boxed{\checkmark}$ |            | aracter $2^k - 1$ | izes ea        |    | m.<br><i>k</i> -1 [ |                                       | k   |       | ] |   |
| two distinct<br>tree. Paths | er of paths between the nodes in an <i>n</i> -not in opposite count as the same | ode "                                 | (n-1)      |                   | $\frac{2n}{n}$ |    | ]                   | $\frac{n(n-1)}{2}$ $\frac{n(n+1)}{2}$ | . L | √<br> |   |   |

Name:\_\_\_\_

Lecture:  $\mathbf{B}$ 

Discussion: Thursday Friday 10 **12**  $\mathbf{2}$ 3 9 11 1 5 6 4

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.







2. (4 points) Check the (single) box that best characterizes each item.

A full m-ary tree with iinternal nodes has \_\_\_\_\_ nodes total.

mi-1

mi + 1

 $\leq mi+1$ 

Height of a binary tree with  $2^n$  nodes.

 $\leq n-1$ 

Name:\_\_\_\_\_

Lecture:  $\mathbf{A}$  $\mathbf{B}$ 

Discussion: Thursday Friday **12**  $\mathbf{2}$ 3 9 **10** 11 1 6 4 5

1. (8 points) Here is a grammar with start symbol S and terminal symbol a. Draw three parse trees for the string aa that match this grammar.

$$S \rightarrow SS \mid N \mid a$$

$$N \rightarrow a$$



2. (4 points) Check the (single) box that best characterizes each item.

A tree node is a proper ancestor of itself.

always

sometimes

never

Removing an edge from a tree (with at least one edge) produces two trees.

always

sometimes

never