Name:____

NetID:_ Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 11 **12** 1 $\mathbf{2}$ 3 10 4 5 6

1. (8 points) Here is a grammar with start symbol S and terminal symbols a and b. Draw three parse trees for the string ababab that match this grammar.

2. (4 points) Check the (single) box that best characterizes each item.

A tree node is a descendent of itself.

always sometimes

never

The number of nodes in a full complete binary tree of height h

 $\leq 2^{h+1} - 1$ $\geq 2^{h+1} - 1$

Name:_____

NetID:_ Lecture: \mathbf{A}

Discussion: Thursday Friday 9 **10** 11 **12** 1 $\mathbf{2}$ 3 4 5 6

1. (8 points) Here is a grammar, with start variable S and terminals a and c. Circle the trees that match the grammar.

$$S \rightarrow SSa \mid cS \mid cc$$

 \mathbf{B}

2. (4 points) Check the (single) box that best characterizes each item.

A binary tree of height h has at most $2^{h+1} - 1$ nodes.

true

false

A tree with n edges has ____ nodes.

n+1

Name:												
NetID:			_	Lecture:			A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
1. (8 points)	Consider the following	lowing gram	mar (\widetilde{J}								
S –	$\rightarrow a S b \mid b S b$	$\mid a \mid b$										
S is the onl	y start symbol.	Γhe terminal	l sym	bols ar	e a and	d b.						
	o sequences of lea this sequence of			_						-		
aabaaba				aa	babaa							
, - ,	Check the (single) ode of a tree is an de	box that be	Г	aractei	izes ea		m.	r	ıever			
The level of in a tree of	the root node height h .	-1	0		1		ı	h - 1			h	

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Give a context-free grammar that generates all strings of the form a^+b^+ . That is, all strings that consist of a sequence of one or more a's followed by a sequence of one or more b's.

2. (4 points) Check the (single) box that best characterizes each item.

Number of non-empty bit strings of length k.

 2^k

 $2^k - 1$

 2^{k-1}

k

The number of paths between two distinct nodes in an n-node tree. Paths in opposite directions count as the same.

n

2n

 $\frac{n(n-1)}{2}$

n(n-1)

 n^2

 $\frac{n(n+1)}{2}$

Name:_____

NetID: Lecture: \mathbf{B} \mathbf{A}

Discussion: Thursday Friday 9 10 11 **12** 1 $\mathbf{2}$ 3 4 5 6

1. (8 points) Here is a grammar with start symbol S and terminal symbols a, b, c, and d. Circle the trees that match the grammar.

2. (4 points) Check the (single) box that best characterizes each item.

A full m-ary tree with iinternal nodes has _____ nodes total.

$$mi-1$$

$$mi+1$$

$$\leq mi + 1$$

Height of a binary tree with 2^n nodes.

$$\leq n-1$$
 $\leq n$ \leq

$$\leq n$$

$$\leq 2^n$$

$$< 2^n - 1$$

Name:												
NetID:				$L\epsilon$	ectur	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

1. (8 points) Here is a grammar with start symbol S and terminal symbol a. Draw three parse trees for the string aa that match this grammar.

2. (4 points) Check the (single) box that best characterizes each item.

A tree node is a proper ancestor of itself.

Removing an edge from a tree (with at least one edge) produces two trees.

sometimes never ne