Name:												
NetID:				Lecture:				В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6

(18 points) Recall that F_n is the nth Fibonacci number, and these start with $F_0 = 0$, $F_1 = 1$.

Let T_n be the number of bit strings of length n that don't contain any consecutive zeros. E.g. when counting strings of length 6, we include 010110, but not 101001. Prove that $T_n = F_{n+2}$ for any natural number n. Hint: if w is a string with no consecutive zeros, either w = 1x, where x is a shorter string, or w = 01y, where y is a shorter string.

Solution: The induction variable is named <u>n</u> and it is the <u>length</u> of/in the string.

Base Case(s): At n=0, we have only the empty string ϵ . So $T_0=1=F_2$.

At n = 1, we have two strings 0 and 1. So $T_1 = 2 = F_3$.

Inductive Hypothesis [Be specific, don't just refer to "the claim"]: Prove that $T_n = F_{n+2}$ for n = 0, 1, ..., k-1.

Inductive Step: Now consider n = k. We need to calculate T_k which is the number of bit strings of length k with no consecutive zeros. Following the hint, these strings come in two mutually-exclusive types:

Type 1: strings of the form 1x, where x is a string of length k-1. By the induction hypothesis, there are F_{k+1} choices for x. So there are F_{k+1} choices for 1x.

Type 2: strings of the form 01y, where y is a string of length k-2. By the induction hypothesis, there are F_k choices for y. So there are F_k choices for 1y.

 T_k is equal to the number of strings of type 1 plus the number of strings of type 2. So $T_k = F_{k+1} + F_k$. By the definition of Fibonacci numbers, this is equal to F_{k+2} . So $T_k = F_{k+2}$, which is what we needed to show.

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (8 points) Here is a grammar with start symbol S and terminal symbol a. Draw three parse trees for the string aaaaaa that match this grammar.

$$S \rightarrow SS \mid aSa \mid aa$$

Solution:

 $2.\ (4\ \mathrm{points})$ Check the (single) box that best characterizes each item.