
CS 173, Spring 18 Examlet 10, Part A 1

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: For any natural number n and any real number x > −1, (1 + x)n ≥ 1 + nx.

Let x be a real number with x > −1.

Solution:

Proof by induction on n.

Base Case(s): At n = 0, (1 + x)n = (1 + x)0 = 1 and 1 + nx = 1 + 0 = 1. So (1 + x)n ≥ 1 + nx.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that (1 + x)n ≥ 1 + nx for any natural number n ≤ k, where k is a natural number.

Inductive Step: By the inductive hypothesis (1+ x)k ≥ 1+ kx. Notice that (1+ x) is positive since
x > −1. So (1 + x)k+1 ≥ (1 + x)(1 + kx).

But (1 + x)(1 + kx) = 1 + x+ kx+ kx2 = 1 + (1 + k)x+ kx2.

And 1 + (1 + k)x+ kx2 ≥ 1 + (1 + k)x because kx2 is non-negative.

So (1+x)k+1 ≥ (1+x)(1+ kx) ≥ 1+ (1+ k)x, and therefore (1+x)k+1 ≥ 1+ (1+ k)x, which is what
we needed to show.
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(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n,
n∑

p=1

1√
p
≥

√
n

You may use the fact that
√
n + 1 ≥ √

n for any natural number n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
n∑

p=1

1√
p
= 1 Also

√
n = 1. So

n∑

p=1

1√
p
≥

√
n.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that

n∑

p=1

1√
p
≥

√
n for

n = 1, 2, . . . , k, for some integer k ≥ 1.

Inductive Step:
k∑

p=1

1√
p
≥

√
k by the inductive hypothesis.

So
k+1∑

p=1

1√
p
=

1√
k + 1

+

k∑

p=1

1√
p
≥ 1√

k + 1
+
√
k =

1 +
√
k
√
k + 1√

k + 1
≥ 1 +

√
k
√
k√

k + 1
=

1 + k√
k + 1

=
√
k + 1

So
k+1∑

p=1

1√
p
≥

√
k + 1, which is what we needed to show.
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(15 points) Let function f : Z+ → R be defined by

f(1) = f(2) = 1

f(n) = 1
2
f(n− 1) + 1

f(n−2)

Use (strong) induction to prove that 1 ≤ f(n) ≤ 2 for all positive integers n.

Hint: prove both inequalities together using one induction.

Solution:

Proof by induction on n.

Base Case(s): At n = 1 and n = 2, f(n) = 1. So 1 ≤ f(n) ≤ 2.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that 1 ≤ f(n) ≤ 2 for
n = 1, 2, . . . k − 1.

Inductive Step: From the inductive hypothesis, we know that 1 ≤ f(k−1) ≤ 2 and 1 ≤ f(k−2) ≤ 2.

So 1
2
≤ 1

2
f(k − 1) ≤ 1

2
· 2 = 1 and 1

2
≤ 1

f(k−2)
≤ 1

1
= 1.

Using the upper bounds from these equations: f(k) = 1
2
f(k − 1) + 1

f(k−2)
≤ 1 + 1 = 2.

Using the lower bounds from these equations: f(k) = 1
2
f(k − 1) + 1

f(k−2)
≥ 1

2
+ 1

2
= 1.

So 1 ≤ f(k) ≤ 2, which is what we needed to show.
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(15 points) Recall the following fact about real numbers

Triangle Inequality: For any real numbers x and y, |x+ y| ≤ |x|+ |y|.

Use this fact and (strong) induction to prove the following claim:

Claim: For any real numbers x1, x2, . . . , xn (n ≥ 2), |x1+x2+ . . .+xn| ≤ |x1|+ |x2|+ . . .+ |xn|.

Solution:

Proof by induction on n.

Base Case(s): At n = 2, the claim is exactly the Triangle Inequality, which we’re assuming to hold.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]:

Suppose that |x1 + x2 + . . .+ xn| ≤ |x1|+ |x2|+ . . .+ |xn| for any list of n real numbers x1, x2, . . . , xn,
where 2 ≤ n ≤ k.

Inductive Step: Let x1, x2, . . . , xk+1 be a list of k + 1 real numbers.

Using the Triangle Inequality, we get

|x1 + x2 + . . .+ xk + xk+1| = |(x1 + x2 + . . .+ xk) + xk+1| ≤ |(x1 + x2 + . . .+ xk)|+ |xk+1|
But, by the inductive hypothesis |x1 + x2 + . . .+ xk| ≤ |x1|+ |x2|+ . . .+ |xk|.
Putting these two equations together, we get

|x1 + x2 + . . .+ xk + xk+1| = |(x1 + x2 + . . .+ xk) + xk+1| ≤ (|x1|+ |x2|+ . . .+ |xk|) + |xk+1|.
So |x1 + x2 + . . .+ xk + xk+1| ≤ |x1|+ |x2|+ . . .+ |xk|+ |xk+1|, which is what we needed to show.
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(15 points) The operator
∏

is like
∑

except that it multiplies its terms rather than adding them.
So e.g.

∏5
p=3(p+ 1) = 4 · 5 · 6. Use (strong) induction to prove the following claim:

Claim:
∏n

p=1
2p−1
2p

< 1
√

2n+1
for all integers n ≥ 1.

Solution:

Proof by induction on n.

Base Case(s): At n = 1,
∏n

p=1
2p−1
2p

= 1
2
= 1

√

4
< 1

√

3
= 1

√

2n+1
.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that
∏n

p=1
2p−1
2p

< 1
√

2n+1
for n = 1, . . . , k.

Inductive Step:

Notice that (2k + 1)(2k + 3) = 4k2 + 8k + 3 < 4k2 + 8k + 4 = (2k + 2)2.

So 2k+1
(2k+2)2

< 1
2k+3

. So (2k+1)2

(2k+2)2
< 2k+1

2k+3
.

Taking the square root of both sides gives us 2k+1
2k+2

<
√

2k+1
√

2k+3
. And therefore 2k+1

2k+2
1

√

2k+1
< 1

√

2k+3
.

Using this fact and the inductive hypothesis, we have

k+1∏

p=1

2p− 1

2p
=

2k + 1

2k + 2
(

k∏

p=1

2p− 1

2p
) <

2k + 1

2k + 2

1√
2k + 1

<
1√

2k + 3

So
∏k+1

p=1
2p−1
2p

< 1
√

2k+3
, which is what we needed to show.
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(15 points) Suppose that 0 < q < 1
2
. Use (strong) induction to prove the following claim:

Claim: (1 + q)n ≤ 1 + 2nq, for all positive integers n.

Solution:

Proof by induction on n.

Base Case(s): At n = 1, (1 + q)n = 1 + q Also 1 + 2nq = 1 + 2q. So (1 + q)n ≤ 1 + 2nq.

Inductive Hypothesis [Be specific, don’t just refer to “the claim”]: Suppose that (1+q)n ≤ 1+2nq,
for n = 1, 2, . . . , k.

Inductive Step: From the inductive hypothesis, we know that (1 + q)k ≤ 1 + 2kq.

At n = k + 1, we have

(1 + q)k+1 = (1 + q)(1 + q)k ≤ (1 + q)(1 + 2kq)

= 1 + q + 2kq + 2kq2 = 1 + q(1 + 2k + 2kq)

Recall that q < 1
2
, so 2kq < 2k−1. Also notice that 1 ≤ 2k−1. Using these facts, we get

(1 + q)k+1 ≤ = 1 + q(1 + 2k + 2kq) ≤ 1 + q(2k−1 + 2k + 2k−1) = 1 + 2k+1q

So (1 + q)k+1 ≤ 1 + 2k+1q, which is what we needed to show.


