Name:_____ Lecture: \mathbf{B} \mathbf{A} Thursday Friday 1 2 3 Discussion: 9 **10** 11 **12** 4 5 6 (15 points) Use (strong) induction to prove the following claim: Claim: For any natural number n and any real number x > -1, $(1+x)^n \ge 1 + nx$. Let x be a real number with x > -1. Proof by induction on n. Base case(s): Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Use (strong) induction to prove the following claim:

Claim: For any positive integer n, $\sum_{p=1}^{n} \frac{1}{\sqrt{p}} \ge \sqrt{n}$

You may use the fact that $\sqrt{n+1} \ge \sqrt{n}$ for any natural number n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Let function $f: \mathbb{Z}^+ \to \mathbb{R}$ be defined by

$$f(1) = f(2) = 1$$

$$f(n) = \frac{1}{2}f(n-1) + \frac{1}{f(n-2)}$$

Use (strong) induction to prove that $1 \le f(n) \le 2$ for all positive integers n.

Hint: prove both inequalities together using one induction.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Name:												
NetID:				Lecture:			A	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
(15 points) R	Recall the followin	g fact about	t real	numbe	ers							
Triangle Inc	equality: For any	real number	rs x a	and y ,	x + y	$\leq x $	+ y .					
Use this fact a	and (strong) indu	ction to pro	ve the	e follov	ving cla	aim:						
Claim: For	any real numbers	x_1, x_2, \ldots, x_n	$c_n (n)$	$\geq 2), \mid :$	$x_1 + x_2$	++	$-x_n \le$	$\leq x_1 $	$+ x_2 $	+	$+ x_n $.
Proof by indu	action on n .											
Base case(s)):											
Inductive H	ypothesis [Be sp	ecific, don't	just	refer t	o "the	claim'	·]:					

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) The operator \prod is like \sum except that it multiplies its terms rather than adding them. So e.g. $\prod_{p=3}^{5} (p+1) = 4 \cdot 5 \cdot 6$. Use (strong) induction to prove the following claim:

Claim: $\prod_{p=1}^{n} \frac{2p-1}{2p} < \frac{1}{\sqrt{2n+1}}$ for all integers $n \ge 1$.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: Hints: Work backwards from the goal, then rewrite into logical order. Try squaring both sides. For positive numbers a and b, a < b if and only if $\sqrt{a} < \sqrt{b}$.

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

(15 points) Suppose that $0 < q < \frac{1}{2}$. Use (strong) induction to prove the following claim:

Claim: $(1+q)^n \le 1 + 2^n q$, for all positive integers n.

Proof by induction on n.

Base case(s):

Inductive Hypothesis [Be specific, don't just refer to "the claim"]:

Rest of the inductive step: Notice that $1 \leq 2^{n-1}$ for any positive integer n.