Name:_____ NetID:_____ Lecture: A B Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6 1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 4. $$T(1) = 7 T(n) = 2T\left(\frac{n}{4}\right) + n$$ - (a) The height: $\log_4 n$ - (b) Number of leaves: $2^{\log_4 n} = n^{1/2} = \sqrt{n}$ [Ok to stop simplifying at $n^{1/2}$.] - (c) Total work (sum of the nodes) at level k (please simplify): There are 2^k nodes at level k. Each of these nodes contains the value $n/4^k$. So the total work is $2^k \cdot n/4^k = n/2^k$. Change of base formula: $\log_b n = (\log_a n)(\log_b a)$ 2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$. 42n! 7^n $100 \log n$ $n \log(n^7)$ 2^{3n} $\log(2^n)$ $(n^3)^7$ **Solution:** $100 \log n \ll \log(2^n) \ll n \log(n^7) \ll (n^3)^7 \ll 7^n \ll 2^{3n} \ll 42n!$ | Name:
NetID: | | | | Le | cture | e : | \mathbf{A} | В | | | | | |------------------------|---|---|-------------------------|---|----------|---------------------------|--------------|---------------------------|--------------|-------|-------|--------| | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2^{-} | 3 | 4 | 5 | 6 | | reals to the | In class, Prof. S
reals whose outp? Briefly justify y | out values are | | | _ | | | | • | • | | | | Solution: | | | | | | | | | | | | | | | true. Consider $f(g(f(x))) \ll \log(g(f(x)))$ | | g(x) : | $=x^{2}$. T | Γhen lo | $\log(g(x))$ |)) = 2 | $\log(f$ | $\dot{f}(x)$ | So it | can't | be the | | 2. (8 points) (| Check the (single) | box that be | est ch | aracter | rizes ea | ach ite | m. | | | | | | | T(1) = d $T(n) = T(n)$ | (2) | | $\Theta(x)$ | \sqrt{n}) $\begin{bmatrix} \\ n^3 \end{bmatrix}$ | | $\Theta(n)$ $\Theta(2^n)$ | | $\Theta(n)$ $\Theta(3^n)$ | $\log n$ |) | | | | T(1) = d $T(n) = 2T($ | | $\log n) \qquad \boxed{ \qquad \qquad }$ $n^2) \qquad \boxed{ \qquad }$ | $\Theta(r)$ $\Theta(r)$ | · · · F | | $O(n)$ $O(2^n)$ | √ | $\Theta(n)$ $\Theta(3^n)$ | $\log n$ |) | | | | 2^n is | $\Theta(3)$ | \mathbb{B}^n) | O(3 | \mathbb{S}^n) \square | ✓ | neith | er of | these | | | | | | | and g produce on sputs and $f(n) \ll$ be $\Theta(g(n))$? | | o [| \checkmark | perha | ps | | yes | | | | | | Name: | | | | | | | | | | | | | |----------------------------------|---|--------------------|---|--------------|----------|-----------------|--------------|---------------------------|-----------|-------|--------|-----------| | NetID: | | | _ | Le | ecture: | | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | | Suppose that f , h). Must f be O | | | | | | to th | e real | ls, su | ch th | at f | is $O(g)$ | | | This is true. Sin $x \le cg(x)$ and 0 | | | | | | | | als c , | k, C | and . | K such | | But then if | we let $p = cC$, w | re have $O \leq$ | f(x) | $\leq ph(x)$ | f) for e | very x | $\geq ma$ | ax(k, x) | K). | | | | | 2. (8 points) (| Check the (single) | box that b | est ch | aracter | rizes ea | ch ite | m. | | | | | | | T(1) = d $T(n) = T(n)$ | (0) | $(\log n)$ n^2 | $\Theta(\sqrt{r})$ | | = | $O(n)$ $O(2^n)$ | √
 | $\Theta(n)$ $\Theta(3^n)$ | $\log n$ |) | | | | T(1) = d $T(n) = 3T($ | | $(\log n)$ (n^2) | $\Theta(\mathbf{y})$ $\Theta(\mathbf{y})$ | · · · = | | $O(n)$ $O(2^n)$ | | $\Theta(n)$ $\Theta(3^n)$ | |) \ | | | | n^{log_25} grows | ${ m at}$: | faster t | | | / | slower | than | n^2 | | | | | | Suppose $f(a)$
Will $g(a)$ be | (n) is $O(g(n))$. | n | 10 | | perhaj | ps 1 | / | yes | | | | | | Name: | | | | | | | | | | | | | |----------------------|--|-------------------------|----------------------|--|----------|---------------------------|---------------------------|---------------------------|-----------------------------|------------|-------|---------| | NetID: | | | | Lecture: | | e: | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | | Suppose that f , and $g(x)$ is $O(h(x))$ | | | | | | ls to | the re | eals, | such | that | f(x) is | | | This is true. Sin h that $0 \le f(x) \le$ | | | | | | | | | | reals | c, k, C | | But then is | f we let $p = cC$, w | re have $O \leq .$ | f(x) | $\leq ph(x)$ | c)h(x) | for eve | $\operatorname{ry} x \ge$ | ≥ max | $\mathbf{x}(k, \mathbf{k})$ | K). | | | | 2. (8 points) | Check the (single) | box that be | est ch | aracte | rizes ea | ach ite | m. | | | | | | | | (n) is $O(g(n))$.
be $\Theta(g(n))$? | no | о [| | perha | ps v | / | yes | | | | | | $17n^3$ | $\Theta(i)$ | n^3) $\sqrt{}$ | $O(n^{\frac{1}{2}})$ | 3) | ne | either o | of thes | se | | | | | | T(1) = c $T(n) = 2T$ | . (, ,) | $(\log n)$ $\sqrt{n^2}$ | $\Theta($ | \sqrt{n}) n^3) | | $\Theta(n)$ $\Theta(2^n)$ | | $\Theta(n)$ $\Theta(3^n)$ | $\log r$ | <i>a</i>) | | | | T(1) = d $T(n) = T($ | (0) | $(\log n)$ $\sqrt{n^2}$ | $\Theta($ | \sqrt{n}) $\begin{bmatrix} n^3 \end{bmatrix}$ | | $\Theta(n)$ $\Theta(2^n)$ | | $\Theta(n)$ $\Theta(3^n)$ | $\log r$ | n) | | | Name:_____ NetID:_____ Lecture: A B Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6 1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2. $$T(1) = 1 T(n) = 4T\left(\frac{n}{2}\right) + n^2$$ - (a) Value in each node at level k: $\left(\frac{n}{2^k}\right)^2 = \frac{n^2}{4^k}$ - (b) Total work (sum of the nodes) at level k (please simplify): Level k has 4^k nodes, each containing the value $\frac{n^2}{4^k}$. So the total for the level is $4^k \frac{n^2}{4^k} = n^2$ - (c) Sum of the work in all internal (non-leaf) nodes (please simplify): The number of non-leaf levels is the height of the tree, which is $\log n$. The work at each level is n^2 . So the total work in all the non-leaf nodes is $n^2 \log n$. Change of base formula: $\log_b n = (\log_a n)(\log_b a)$ 2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$. $n \log n$ $\log(n^{17})$ $\sqrt{n} + n! + 18$ 2^n $8n^2$ $8^{\log_8 n}$ $0.001n^3$ **Solution:** $\log(n^{17}) \ll 8^{\log_8 n} \ll n \log n \ll 8n^2 \ll 0.001n^3 \ll 2^n \ll \sqrt{n} + n! + 18$ | Name: | | | | | | | | | | | | | |-------------------------|--|------------------|-------------------------|-------|--------|-----------------|--------------|---------------------------|----------|-----|-------|---------| | NetID: | | | _ | Le | cture | e: | \mathbf{A} | В | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | means for f | Suppose that f at to be $O(g)$. There are positi | | | | | | | | | | | what it | | | Check the (single) | | | | | | | , | v | | | | | T(1) = c $T(n) = 3T(n)$ | /2) | $(\log n)$ n^2 | $\Theta(r)$ $\Theta(r)$ | | | $O(n)$ $O(2^n)$ | | $\Theta(n)$ $\Theta(3^n)$ | $\log n$ |) 1 | √
 | | | T(1) = d $T(n) = 2T(n)$ | (0) | $\log n$ n^2 | $\Theta(r)$ $\Theta(r)$ | · / F | | $O(n)$ $O(2^n)$ | $\sqrt{}$ | $\Theta(n)$ $\Theta(3^n)$ | $\log n$ | | | | | 2^n | $\Theta(i)$ | n!) | O(n!) |) | nei | ther o | f thes | e _ | | | | | | | and g produce on puts and $f(n) \ll$ e $O(g(n))$? | | о [| | perhaj | ps | | yes | | | | |