Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 4.

$$T(1) = 7 T(n) = 2T\left(\frac{n}{4}\right) + n$$

- (a) The height: $\log_4 n$
- (b) Number of leaves: $2^{\log_4 n} = n^{1/2} = \sqrt{n}$ [Ok to stop simplifying at $n^{1/2}$.]
- (c) Total work (sum of the nodes) at level k (please simplify): There are 2^k nodes at level k. Each of these nodes contains the value $n/4^k$. So the total work is $2^k \cdot n/4^k = n/2^k$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

42n! 7^n $100 \log n$ $n \log(n^7)$ 2^{3n} $\log(2^n)$ $(n^3)^7$

Solution:

 $100 \log n \ll \log(2^n) \ll n \log(n^7) \ll (n^3)^7 \ll 7^n \ll 2^{3n} \ll 42n!$

Name: NetID:				Le	cture	e :	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2^{-}	3	4	5	6
reals to the	In class, Prof. S reals whose outp? Briefly justify y	out values are			_				•	•		
Solution:												
	true. Consider $f(g(f(x))) \ll \log(g(f(x)))$		g(x) :	$=x^{2}$. T	Γhen lo	$\log(g(x))$)) = 2	$\log(f$	$\dot{f}(x)$	So it	can't	be the
2. (8 points) (Check the (single)	box that be	est ch	aracter	rizes ea	ach ite	m.					
T(1) = d $T(n) = T(n)$	(2)		$\Theta(x)$	\sqrt{n}) $\begin{bmatrix} \\ n^3 \end{bmatrix}$		$\Theta(n)$ $\Theta(2^n)$		$\Theta(n)$ $\Theta(3^n)$	$\log n$)		
T(1) = d $T(n) = 2T($		$\log n) \qquad \boxed{ \qquad \qquad }$ $n^2) \qquad \boxed{ \qquad }$	$\Theta(r)$ $\Theta(r)$	· · · F		$O(n)$ $O(2^n)$	√	$\Theta(n)$ $\Theta(3^n)$	$\log n$)		
2^n is	$\Theta(3)$	\mathbb{B}^n)	O(3	\mathbb{S}^n) \square	✓	neith	er of	these				
	and g produce on sputs and $f(n) \ll$ be $\Theta(g(n))$?		o [\checkmark	perha	ps		yes				

Name:												
NetID:			_	Le	ecture:		\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
	Suppose that f , h). Must f be O						to th	e real	ls, su	ch th	at f	is $O(g)$
	This is true. Sin $x \le cg(x)$ and 0								als c ,	k, C	and .	K such
But then if	we let $p = cC$, w	re have $O \leq$	f(x)	$\leq ph(x)$	f) for e	very x	$\geq ma$	ax(k, x)	K).			
2. (8 points) (Check the (single)	box that b	est ch	aracter	rizes ea	ch ite	m.					
T(1) = d $T(n) = T(n)$	(0)	$(\log n)$ n^2	$\Theta(\sqrt{r})$		=	$O(n)$ $O(2^n)$	√ 	$\Theta(n)$ $\Theta(3^n)$	$\log n$)		
T(1) = d $T(n) = 3T($		$(\log n)$ (n^2)	$\Theta(\mathbf{y})$ $\Theta(\mathbf{y})$	· · · =		$O(n)$ $O(2^n)$		$\Theta(n)$ $\Theta(3^n)$) \		
n^{log_25} grows	${ m at}$:	faster t			/	slower	than	n^2				
Suppose $f(a)$ Will $g(a)$ be	(n) is $O(g(n))$.	n	10		perhaj	ps 1	/	yes				

Name:												
NetID:				Lecture:		e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
	Suppose that f , and $g(x)$ is $O(h(x))$						ls to	the re	eals,	such	that	f(x) is
	This is true. Sin h that $0 \le f(x) \le$										reals	c, k, C
But then is	f we let $p = cC$, w	re have $O \leq .$	f(x)	$\leq ph(x)$	c)h(x)	for eve	$\operatorname{ry} x \ge$	≥ max	$\mathbf{x}(k, \mathbf{k})$	K).		
2. (8 points)	Check the (single)	box that be	est ch	aracte	rizes ea	ach ite	m.					
	(n) is $O(g(n))$. be $\Theta(g(n))$?	no	о [perha	ps v	/	yes				
$17n^3$	$\Theta(i)$	n^3) $\sqrt{}$	$O(n^{\frac{1}{2}})$	3)	ne	either o	of thes	se				
T(1) = c $T(n) = 2T$. (, ,)	$(\log n)$ $\sqrt{n^2}$	$\Theta($	\sqrt{n}) n^3)		$\Theta(n)$ $\Theta(2^n)$		$\Theta(n)$ $\Theta(3^n)$	$\log r$	<i>a</i>)		
T(1) = d $T(n) = T($	(0)	$(\log n)$ $\sqrt{n^2}$	$\Theta($	\sqrt{n}) $\begin{bmatrix} n^3 \end{bmatrix}$		$\Theta(n)$ $\Theta(2^n)$		$\Theta(n)$ $\Theta(3^n)$	$\log r$	n)		

Name:_____

NetID:_____ Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

1. (9 points) Fill in key facts about the recursion tree for T, assuming that n is a power of 2.

$$T(1) = 1 T(n) = 4T\left(\frac{n}{2}\right) + n^2$$

- (a) Value in each node at level k: $\left(\frac{n}{2^k}\right)^2 = \frac{n^2}{4^k}$
- (b) Total work (sum of the nodes) at level k (please simplify): Level k has 4^k nodes, each containing the value $\frac{n^2}{4^k}$. So the total for the level is $4^k \frac{n^2}{4^k} = n^2$
- (c) Sum of the work in all internal (non-leaf) nodes (please simplify): The number of non-leaf levels is the height of the tree, which is $\log n$. The work at each level is n^2 . So the total work in all the non-leaf nodes is $n^2 \log n$.

Change of base formula: $\log_b n = (\log_a n)(\log_b a)$

2. (6 points) Write the following functions in the boxes so that f is to the left of g if and only if $f(n) \ll g(n)$.

 $n \log n$ $\log(n^{17})$ $\sqrt{n} + n! + 18$ 2^n $8n^2$ $8^{\log_8 n}$ $0.001n^3$

Solution:

 $\log(n^{17}) \ll 8^{\log_8 n} \ll n \log n \ll 8n^2 \ll 0.001n^3 \ll 2^n \ll \sqrt{n} + n! + 18$

Name:												
NetID:			_	Le	cture	e:	\mathbf{A}	В				
Discussion:	Thursday	Friday	9	10	11	12	1	2	3	4	5	6
means for f	Suppose that f at to be $O(g)$. There are positi											what it
	Check the (single)							,	v			
T(1) = c $T(n) = 3T(n)$	/2)	$(\log n)$ n^2	$\Theta(r)$ $\Theta(r)$			$O(n)$ $O(2^n)$		$\Theta(n)$ $\Theta(3^n)$	$\log n$) 1	√ 	
T(1) = d $T(n) = 2T(n)$	(0)	$\log n$ n^2	$\Theta(r)$ $\Theta(r)$	· / F		$O(n)$ $O(2^n)$	$\sqrt{}$	$\Theta(n)$ $\Theta(3^n)$	$\log n$			
2^n	$\Theta(i)$	n!)	O(n!))	nei	ther o	f thes	e _				
	and g produce on puts and $f(n) \ll$ e $O(g(n))$?		о [perhaj	ps		yes				