
CS 173, Spring 18 Examlet 11, Part A 1

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Hoist(a1, . . . , an: an array of n positive integers)
02 if (n = 1) return 0
03 else if (n = 2) return a1 + a2)
04 else
05 p = ⌊n/3⌋
06 q = ⌊2n/3⌋
07 rv = max(Hoist(a1, . . . , ap), Hoist(aq+1, . . . , an))
08 for i=p to q
09 rv = max(rv, ai + ai+1)
10 return rv

1. (5 points) Let T (n) be the running time of Hoist. Give a recursive definition of T (n).

Solution:

T (1) = b

T (2) = c

T (n) = 2T (n/3) + dn

2. (3 points) What is the height of the recursion tree for T (n), assuming n is a power of 3?

Solution: log3(n)

[If n is a power of 3, it will hit the n = 1 base case and not the n = 2 base case.]

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution:
dn

3k
2k

4. (4 points) How many leaves does this recursion tree have? Simplify so that your answer is easy to
compare to standard running times. Recall that logb x = loga x logb a.

Solution: 2log3 n = nlog32



CS 173, Spring 18 Examlet 11, Part A 2

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Weave(a1,..., an) \\ input is an array of n integers
02 for i = 1 to n − 1
03 min = i
04 for j = i to n
05 if aj < amin then min = j
06 swap(ai,amin) \\ interchange the values at positions i and min in the array

1. (3 points) If the input is 10, 5, 2, 3, 8, what are the array values after two iterations of the outer
loop?

Solution: After the second iteration, it contains 2, 5, 10, 3, 8.

2. (3 points) Let T (n) be the number of times that line 5 is executed. Express T (n) using summation
notation, directly following the structure of the code.

Solution: The ith time through the outer loop, the inner loop runs n − i + 1 times. So the total
number of times that line 5 executes is:
n−1∑

i=1

(n − i + 1)

3. (3 points) Find an (exact) closed form for T (n). Show your work.

Solution: If we break apart the sum and then substitute in a new index variable p = n − i we
get:
n−1∑

i=1

(n − i + 1) = (n − 1) +
n−1∑

i=1

(n − i) = (n − 1) +
n−1∑

p=1

p = (n − 1) +
n(n − 1)

2

Simplifying, we get

(n − 1) + n(n−1)
2

= n − 1 + 1
2
n2 − 1

2
n = 1

2
n2 + 1

2
n − 1

4. (3 points) What is the big-theta running time of Weave?

Solution: Θ(n2)

5. (3 points) Check the (single) box that best characterizes each item.

The running time of Karatsuba’s algorithm
is recursively defined by T (1) = d and
T (n) =

2T (n/2) + cn 3T (n/2) + cn
√

4T (n/2) + cn 4T (n/2) + c



CS 173, Spring 18 Examlet 11, Part A 3

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Handle(L1,L2: sorted lists of integers)
02 if (L1 is empty)
03 return L2

04 else if (L2 is empty)
05 return L1

06 else if (head(L1) <= head(L2))
07 return cons(head(L1), Handle(rest(L1),L2))
08 else
09 return cons(head(L2), Handle(L1,rest(L2)))

Assume that head, rest, cons, and testing for the empty list all take constant time.

1. (5 points) Suppose that n is the sum of the lengths of the input lists. Let T (n) be the running time
of Handle. Give a recursive definition of T (n).

Solution: T (1) = T (0) = c

T (n) = T (n − 1) + d

2. (3 points) What is the height of the recursion tree for T (n)?

Solution: In the worst case, we hit the base case when exactly one of the two lists is empty. That
is n − k = 1, where k is the level. So the tree has height n − 1.

If one list empties while the other still has multiple elements, it’s possible for the tree to be shorter.
But we’re primarily interested in the worst case.

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: Notice that the tree doesn’t branch, so there is only one node at each level. So the
total amount of work at level k is d

4. (4 points) What is the big-theta running time of Handle?

Solution:

Θ(n) (E.g. unroll the recursive definition.)



CS 173, Spring 18 Examlet 11, Part A 4

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Execute(p1, . . . , pn : list of n 2D points, n ≥ 3)
02 if (n = 3)
03 return the largest of d(p1, p2), d(p1, p3), and d(p2, p3)
04 else
05 x = Execute(p2, p3, p4, . . . , pn) \\ removing p1 from list takes constant time
06 y = Execute(p1, p3, p4, . . . , pn) \\ removing p2 from list takes constant time
07 z = Execute(p1, p2, p4, . . . , pn) \\ removing p3 from list takes constant time
08 return max(x, y,z)

The function d(p, q) returns (in constant time) the straight-line distance between two points p and q.

1. (5 points) Suppose T (n) is the running time of Execute on an input array of length n. Give a
recursive definition of T (n).

Solution: T (3) = c

T (n) = 3T (n − 1) + d

2. (4 points) What is the height of the recursion tree for T (n)?

Solution: We hit the base case when n−k = 3, where k is the level. So the tree has height n−3.

3. (3 points) How many leaves are in the recursion tree for T (n)?

Solution: 3n−3

4. (3 points) What is the big-Theta running time of Execute?

Solution: Θ(3n)



CS 173, Spring 18 Examlet 11, Part A 5

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Wow(k,n) \\ inputs are positive integers
02 if (n = 1) return k
03 else
04 half = ⌊n/2⌋
05 answer = Wow(k,half) * Wow(k,half)
06 if (n is odd)
07 answer = answer*k
08 return answer

1. (5 points) Suppose T (n) is the running time of Wow. Give a recursive definition of T (n).

Solution:

T (1) = c,

T (n) = 2T (n/2) + d

2. (3 points) What is the height of the recursion tree for T (n)? (Assume that n is a power of 2.)

Solution: log2 n

3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: d2k

4. (4 points) What is the big-Theta running time of Wow?

Solution:

Work at the leaves is c2log n = cn.

Work at internal nodes is
∑log n−1

k=0 d2k. This is equal to d2log n − 1) = d(n − 1).

Θ(n)



CS 173, Spring 18 Examlet 11, Part A 6

Name:

NetID: Lecture: A B

Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6

01 Fabricate(a1, . . . , an; b1, . . . , bn) \\ input is 2 lists of n integers, n is a power of 2
02 if (n = 1)
03 return a1b1

04 else
05 p = n

2

06 rv = Fabricate(a1, . . . , ap, b1, . . . , bp)
07 rv = rv + Fabricate(a1, . . . , ap, bp+1, . . . , bn)
08 rv = rv + Fabricate(ap+1, . . . , an, bp+1, . . . , bn)
09 rv = rv + Fabricate(ap+1, . . . , an, b1, . . . , bp)
10 return rv

1. (5 points) Suppose that T (n) is the running time of Fabricate on an input array of length n. Give
a recursive definition of T (n). Assume that dividing the list in half takes O(n) time.

Solution:

T (1) = c

T (n) = 4T (n/2) + dn

2. (4 points) What is the height of the recursion tree for T (n), assuming n is a power of 2?

Solution: log2 n

3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree?

Solution: There are 4k nodes, each containing dn/2k. So the total work is 2kdn

4. (3 points) How many leaves are in the recursion tree for T (n)? (Simplify your answer.)

Solution: 4log2 n = 4log4 n log2 4 = nlog2 4 = n2


