Name:_____ NetID:_____ Lecture: A B Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6 ``` 01 Hoist(a_1, \ldots, a_n): an array of n positive integers) if (n = 1) return 0 03 else if (n = 2) return a_1 + a_2) 04 05 p = |n/3| 06 q = |2n/3| rv = max(Hoist(a_1, ..., a_p), Hoist(a_{q+1}, ..., a_n)) 07 08 for i=p to q 09 rv = \max(rv, a_i + a_{i+1}) 10 return rv ``` 1. (5 points) Let T(n) be the running time of Hoist. Give a recursive definition of T(n). 2. (3 points) What is the height of the recursion tree for T(n), assuming n is a power of 3? 3. (3 points) What is amount of work (aka sum of the values in the nodes) at level k of this tree? 4. (4 points) How many leaves does this recursion tree have? Simplify so that your answer is easy to compare to standard running times. Recall that $\log_b x = \log_a x \log_b a$. NetID:_____ Lecture: A B Discussion: Thursday Friday 9 10 11 12 1 2 3 4 5 6 - 01 Weave $(a_1,..., a_n) \setminus$ input is an array of n integers - $02 \qquad \text{for } i = 1 \text{ to } n 1$ - 03 min = i - of for j = i to n - if $a_i < a_{min}$ then min = j - swap (a_i, a_{min}) \\ interchange the values at positions i and min in the array - 1. (3 points) If the input is 10, 5, 2, 3, 8, what are the array values after two iterations of the outer loop? 2. (3 points) Let T(n) be the number of times that line 5 is executed. Express T(n) using summation notation, directly following the structure of the code. - 3. (3 points) Find an (exact) closed form for T(n). Show your work. - 4. (3 points) What is the big-theta running time of Weave? - 5. (3 points) Check the (single) box that best characterizes each item. The running time of Karatsuba's algorithm is recursively defined by T(1) = d and T(n) = $$2T(n/2) + cn$$ $$4T(n/2) + cn$$ | 3T(n/2) + cn | | |--------------|--| | 4T(n/2) + c | | | Name: | | | | | | | | | | | | | |---------------|---|-------------------------------|-----------------|-------------|---------------------------|--------------|------|---------|------|--------|--------|---------| | NetID: | | | _ | Lecture: | | \mathbf{A} | В | | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | 01 Handl | $e(L_1, L_2: $ sorted list | s of integers | s) | | | | | | | | | | | | if $(L_1 \text{ is empty})$ | O | , | | | | | | | | | | | 03 | return L_2 | | | | | | | | | | | | | 04 | else if $(L_2 \text{ is empty})$ | r) | | | | | | | | | | | | 05 | return L_1 | | | | | | | | | | | | | 06 | else if $(\text{head}(L_1) <$ | $= head(L_2)$ |) | | | | | | | | | | | 07 | return cons(h | $\operatorname{ead}(L_1)$, H | andle | (rest(L | $(1), L_2)$ |) | | | | | | | | 08 | else | | | | | | | | | | | | | 09 | return cons(h | $\operatorname{ead}(L_2)$, H | andle | $(L_1, res$ | $\operatorname{t}(L_2)))$ |) | | | | | | | | 1. (5 points) | ad, rest, cons, and Suppose that n is to Give a recursive d | the sum of t | he ler | ngths o | | | | | | the 1 | runni | ng time | | 2. (3 points) | What is the height | of the recu | ırsion | tree fo | or $T(n)$ |)? | | | | | | | | 3. (3 points) | What is amount of | f work (aka | sum | of the | values | in the | node | s) at l | evel | k of t | this t | ree? | | 4. (4 points) | What is the big-th | eta running | $g ext{ time}$ | e of Ha | ndle? | | | | | | | | | 01 Execute(p_1 , 02 if ($n = 03$) 04 else 05 06 07 | = 3) return the la $x = Execute($ $y = Execute($ $z E$ | argest of $d(p_1, p_2, p_3, p_4, \dots, (p_1, p_3, p_4, \dots, (p_1, p_2, p_4, \dots, x, y, z))$ | ents, n $(p_1, p_2), \dots, (p_n), (p_n), (p_n), (p_n), \dots, (p_n)$ me) t | 10 $\geq 3)$ $d(p_1, p_1, p_2, p_3)$ $\downarrow \setminus 1$ $\downarrow \setminus 1$ the strain | removi
removi
removi
ight-lin | $oxed{12}$ d $d(p_2,$ $\log p_1$ for $\log p_2$ for $\log p_3$ | rom li
rom li
rom li
ance l | ist tak
ist tak
betwe | xes co
xes co
en tw | onstar
onstar
vo poi | nt tim
nt tim
ints p | e
e
and q | |--|--|--|---|---|---|--|--------------------------------------|-------------------------------|----------------------------|--------------------------------------|----------------------------|-------------------------| | 01 Execute(p_1 , 02 if ($n = 0.03$) 04 else 05 06 07 08 The function $d(p, 0.05)$ Suppose 1. (5 points) Supp | , p_n : list
= 3)
return the la
x = Execute(y)
y = Execute(y)
z = Execute(y)
return $\max(x)$
y = Execute(y) | of n 2D point argest of $d(p_1, p_2, p_3, p_4, \dots, (p_1, p_3, p_4, \dots, (p_1, p_2, p_4, \dots, x, y, z)$ in constant ti | ents, n $(p_1, p_2), \dots, (p_n), (p_n), (p_n), (p_n), \dots, (p_n)$ me) t | ≥ 3) $d(p_1, p_1, p_2)$ $\downarrow \downarrow $ | o ₃), and
removi
removi
removi | $d\ d(p_2,$ $\log\ p_1\ f$ $\log\ p_2\ f$ $\log\ p_3\ f$ \log distance distance | p_3) rom lift rom lift ance l | ist tak
ist tak
ist tak | xes co
xes co
xes co | onstar
onstar
onstar
vo poi | nt tim
nt tim
nt tim | ne
ne
ne
and q | | 02 if $(n = 0.03)$ 04 else 05 c 06 c 07 c 08 The function $d(p, 0.05)$ | = 3) return the la $x = Execute($ $y = Execute($ $z E$ | argest of $d(p_1, p_2, p_3, p_4, \dots, (p_1, p_3, p_4, \dots, (p_1, p_2, p_4, \dots, x, y, z))$ | $(p_1, p_2),$ $(p_n),$ $(p_n),$ $(p_n),$ $(p_n),$ $(p_n),$ | $d(p_1, p_1)$ | removi
removi
removi
ight-lin | $\log p_1$ for p_2 for p_3 $p_$ | rom li
rom li
rom li
ance l | ist tak
ist tak
betwe | xes co
xes co
en tw | onstar
onstar
vo poi | nt tim
nt tim
ints p | e
e
and q | | 03
04 else
05 5
06 5
07 5
08
The function $d(p, q)$ | return the la $x = \text{Execute}(y) \text{Execute}$ | $(p_2, p_3, p_4, \dots (p_1, p_3, p_4, \dots (p_1, p_2, p_4, \dots (p_1, p_2, p_4, \dots (x, y, z))$ | (p_n) (p_n) (p_n) (p_n) | \\ 1
\\ 1
\\ 1 | removi
removi
removi
ight-lin | $\log p_1$ for p_2 for p_3 $p_$ | rom li
rom li
rom li
ance l | ist tak
ist tak
betwe | xes co
xes co
en tw | onstar
onstar
vo poi | nt tim
nt tim
ints p | e
e
and q | | 04 else 05 06 07 08 The function $d(p, 0)$ | x = Execute(y) Execut | $(p_2, p_3, p_4, \dots (p_1, p_3, p_4, \dots (p_1, p_2, p_4, \dots (p_1, p_2, p_4, \dots (x, y, z))$ | (p_n) (p_n) (p_n) (p_n) | \\ 1
\\ 1
\\ 1 | removi
removi
removi
ight-lin | $\log p_1$ for p_2 for p_3 $p_$ | rom li
rom li
rom li
ance l | ist tak
ist tak
betwe | xes co
xes co
en tw | onstar
onstar
vo poi | nt tim
nt tim
ints p | e
e
and q | | 05 06 07 08 The function $d(p, q)$ 1. (5 points) Supp | y = Execute(z) $z = Execute(z)$ =$ | $(p_1, p_3, p_4, \dots, (p_1, p_2, $ | (p_n) (p_n) me) t | \\ ı\\ ı | removi
removi
.ight-lii | $\log p_2$ for $\log p_3$ for $\log p_3$ for $\log p_3$ for $\log p_3$ | rom li
rom li
ance l | ist tak
ist tak
betwe | xes co
xes co
en tw | onstar
onstar
vo poi | nt tim
nt tim
ints p | e
e
and q | | 06 07 08 The function $d(p, q)$ 1. (5 points) Supp | y = Execute(z) $z = Execute(z)$ =$ | $(p_1, p_3, p_4, \dots, (p_1, p_2, $ | (p_n) (p_n) me) t | \\ ı\\ ı | removi
removi
.ight-lii | $\log p_2$ for $\log p_3$ for $\log p_3$ for $\log p_3$ for $\log p_3$ | rom li
rom li
ance l | ist tak
ist tak
betwe | xes co
xes co
en tw | onstar
onstar
vo poi | nt tim
nt tim
ints p | e
e
and q | | 07 08 The function $d(p, q)$ 1. (5 points) Supp | $z = \text{Execute}($ $return \max(x)$ $q) \text{ returns (in the pose } T(n) \text{ is }$ | $(p_1, p_2, p_4, \dots x, y, z)$
n constant ti | (p_n) me) t | \\ ı
he stra | removi
.ight-lii | $\log p_3$ for the distance distance distance p_3 | rom li
ance l | ist tak | xes co
en tw | onstar
vo poi | nt tim | and q | | The function $d(p, q)$ 1. (5 points) Supp | return $\max(x)$
q) returns (in cose $T(n)$ is | x, y,z)
n constant ti | me) t | he stra | ight-lii | ne dista | ance l | betwee | en tw | vo poi | ints p | and q | | The function $d(p, q)$
1. (5 points) Supp | q) returns (in cose $T(n)$ is | n constant ti | | | | | | | | | | | | 1. (5 points) Supp | pose $T(n)$ is | 2. (4 points) What | t is the heigh | nt of the recu | ırsion | tree fo | or $T(n)$ |)? | | | | | | | | 3. (3 points) How | many leaves | are in the re | ecursi | on tree | e for T | (n)? | | | | | | | 4. (3 points) What is the big-Theta running time of Execute? | Name: | | | | | | | | | | | | | | | | | |-----------------|------------------------------|----------------|--------|---------|------------|--------|-----------------------|------|--------|-------|-------|-----|--|--|--|--| | NetID: | NetID: | | | | Lecture: A | | | | | | В | | | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | | | | | | 01 Wow(k. | n) \\ inputs are | e positive int | tegers | 3 | | | | | | | | | | | | | | 02 if | f(n=1) return k | | | | | | | | | | | | | | | | | 03 e | else | | | | | | | | | | | | | | | | | 04 | $half = \lfloor n/2 \rfloor$ | | | | | | | | | | | | | | | | | 05 | answer = Wo | pw(k,half) * | k Wo | w(k,ha | alf) | | | | | | | | | | | | | 06 | if $(n \text{ is odd})$ | | | | | | | | | | | | | | | | | 07 | | = answer*k | | | | | | | | | | | | | | | | 08 | return answe | r | 2. (3 points) V | What is the heigh | t of the recu | ırsion | tree fo | or $T(n)$ |)? (As | sume | that | n is a | a pow | er of | 2.) | | | | | 4. (4 points) What is the big-Theta running time of Wow? 6 5 4 | Name: | | | | | | | | | | | |-------------|----------|--------------|-------------|-------|----|--------------|---|---|---|--| | NetID: | | - | $L\epsilon$ | ectur | e: | \mathbf{A} | В | | | | | Discussion: | Thursday | Friday | 9 | 10 | 11 | 12 | 1 | 2 | 3 | | ``` 01 Fabricate(a_1, \ldots, a_n; b_1, \ldots, b_n) \setminus \text{input is 2 lists of n integers, n is a power of 2} 02 if (n = 1) 03 return a_1b_1 04 else p = \frac{n}{2} 05 \operatorname{rv} = \operatorname{Fabricate}(a_1, \ldots, a_p, b_1, \ldots, b_p) 06 rv = rv + Fabricate(a_1, \dots, a_p, b_{p+1}, \dots, b_n) 07 08 rv = rv + Fabricate(a_{p+1}, \dots, a_n, b_{p+1}, \dots, b_n) rv = rv + Fabricate(a_{p+1}, \ldots, a_n, b_1, \ldots, b_p) 09 10 return rv ``` 1. (5 points) Suppose that T(n) is the running time of Fabricate on an input array of length n. Give a recursive definition of T(n). Assume that dividing the list in half takes O(n) time. 2. (4 points) What is the height of the recursion tree for T(n), assuming n is a power of 2? 3. (3 points) What is the amount of work (aka sum of the values in the nodes) at level k of this tree? 4. (3 points) How many leaves are in the recursion tree for T(n)? (Simplify your answer.)